
A Complete Axiomatization of Strict Equality
over Infinite Trees (Extended Version)?

Technical Report SIC-03-2009 UCM

Javier Álvez and Francisco J. López-Fraguas

Universidad Complutense de Madrid
javieralvez@fdi.ucm.es fraguas@sip.ucm.es

Abstract. Computing with data values that are some kind of trees —
finite, infinite, rational— is at the core of declarative programming, either
logic, functional or functional-logic. Understanding the logic of trees is
therefore a fundamental question with impact in different aspects, like
language design, including constraint systems or constructive negation,
or obtaining methods for verifying and reasoning about programs. The
theory of true equality over finite or infinite trees is quite well known. In
particular, a seminal paper by Maher proved its decidability and gave a
complete axiomatization of the theory. However, the sensible notion of
equality for functional and functional-logic languages with a lazy evalua-
tion regime is strict equality, a computable approximation to true equal-
ity for possibly infinite and partial trees. In this paper, we investigate
the first-order theory of strict equality, arriving to remarkable and not
obvious results: the theory is again decidable and admits a complete ax-
iomatization, not requiring predicate symbols other than strict equality
itself. Besides, the results stem from an effective —taking into account
the intrinsic complexity of the problem— decision procedure that can be
seen as a constraint solver for general strict equality constraints.

1 Introduction

Computing with data values that are —or can be interpreted as— some kind
of trees is at the core of declarative programming, either logic, functional or
functional-logic programming. The family of trees may vary from finite trees, for
the case of standard logic programming, infinite rational trees, for the case of
Prolog-II and variants, or infinite trees (that correspond to data values in con-
structor data-types) for the case of functional or functional-logic programming
that allow non-terminating programs by following a lazy evaluation regime.

Understanding trees, in particular the logical principles governing tree equal-
ity, is a fundamental question with impact in different aspects of declarative

? This work has been partially supported by the Spanish projects
TIN2005-09207-C03-03, TIN2008-06622-C03-01, S-0505/TIC/0407,
UCM-BSCH-GR58/08-910502, TIN2007-66523 and GIU07/35.

programming languages. For instance, adding constructive negation abilities to
a logic language requires solving complex Herbrand constraints over finite trees.

The theory of true equality ≈1 over finite or infinite trees is quite well known.
In a seminal paper [12], Maher proved its decidability and gave a complete
axiomatization for the cases of finite and infinite trees, and finite and infinite
signatures. In another influential paper [4], the authors provided more effective
decision procedures, based on reduction to solved forms by quantifier elimination.

In functional or functional-logic languages like Haskell, Curry or Toy [13,
7, 9], the universe of interest is that of (possibly) infinite partial trees, because
non-terminating programs handled with lazy evaluation lead to that kind of
trees as denotations of expressions. Partiality means that some of the tree
components may be undefined. For instance, with the definitions loop = loop
and repeat(x) = [x|repeat(x)], repeat(0) denotes the infinite list [0, 0, 0, . . .],
repeat(loop) denotes the infinite partial list [⊥,⊥,⊥, . . .], and [0|loop] denotes
the finite partial list [0|⊥]. In those languages, true equality is not the sensible
notion to consider, because true equality over partial trees is not Scott continu-
ous (hence not computable). It is then replaced (see e.g. [7]) by strict equality
== —the largest continuous approximation to ≈—, defined as the restriction
of ≈ to finite and total trees. The theories of equality and of strict equality
for infinite partial trees are far from being the same: for instance, the formulae
∀x x ≈ x and ∃x x ≈ s(x) hold, while ∀x x == x and ∃x x == s(x) do not.

As far as we know, a comprehensive study of the full first-order theory of
strict equality has not been done before. Certainly, strict equality is incorpo-
rated as primitive in the aforementioned languages, and there are several works
incorporating various Herbrand constraint systems —and corresponding solving
procedures— to functional-logic languages [1, 8, 2]. But in all cases, the consid-
ered class of formulae over == is only a subset of general first-order formulae.
Besides, the works that study true equality cannot be easily extended to handle
strict equality. For example, in [6] the authors propose to extend the theory of
true equality with the predicate finite/1, that only holds for finite trees. Coping
with strict equality would require an additional predicate total/1 (to characterize
those trees not having ⊥ as component). Comparing that hypothetical approach
with our proposal of directly considering the first-order theory of ==, we see sev-
eral disadvantages: first, the axiomatization of ≈ +finite+total would be larger
than ours, leading also to larger proofs of decidability and completeness; second,
the theory would be less directly connected to the mentioned languages (Haskell,
Curry, Toy) because programs in those languages use == but not finite or total.

Our aim is precisely to investigate the full first-order theory of strict equality
over the algebra IT of possibly infinite partial trees. Note that decidability and
existence of complete axiomatization for≈ says nothing about the same problems
for ==, even although == is a strict subset of ≈ (i.e., ∀x · y (x == y → x ≈ y)
is valid in IT). These are indeed the main questions tackled in this paper:

– Does the theory of == over IT admit a complete recursive axiomatization?

1 By true equality we mean t1 ≈ t2 iff t1 and t2 are the same tree.

– In the affirmative case, is it possible that the axioms use only the symbol
==? We cannot discard a priori the possibility of explicitly connecting ==
to ≈, although the resulting set of axioms and transformations rules would
be more complicated since we would need to add connection axioms (like the
formula stated above) to the axiomatization of ≈ in [12].

– A complete recursive axiomatization of a theory implies its decidability (at
least a brute force decision procedure exists). Can we give a more practical
decision procedure, in the style of [4]? As a matter of fact, such a procedure
—if existing— will be itself a proof of completeness for the theory.

We obtain affirmative answers to these questions, both in the cases of infinite and
finite signatures. Our paper does not look for immediate applications, keeping
in a theoretical realm and trying to achieve fundamental and not obvious results
about strict equality that could be a basis for potential applications: the design
of constraint systems more expressive than existing ones or the development of
reasoning frameworks for functional-logic programs with built-in equality.

Outline of the paper. In the next section, we provide preliminary definitions
and notation. In Section 3, we give an axiomatization for strict equality. Next,
in Section 4, we first introduce some transformation rules and then provide
decision methods for strict equality, distinguishing the cases of infinite and finite
signatures. Finally, in Section 5, we discuss complexity issues and future work.

2 Preliminaries

Let V be a set of countable variables and Σ = PΣ ∪FΣ a signature of predicate
and function symbols where each symbol s has an associated arity n, denoted by
s/n, and PΣ exclusively consists of the symbol ==/2, known as strict equality.
For technical convenience, we assume that FΣ contains at least a 0-ary function
symbol (constant), an n-ary function symbol with n > 0 and a distinguished 0-
ary function symbol ⊥ known as bottom. If Σ contains a finite number of function
symbols, then Σ is said to be finite. Otherwise, Σ is infinite. By using the name
function, we follow the tradition of first-order logic, but note that the notion of
function corresponds to the notion of free constructor in functional/functional-
logic programming and not to defined function, which plays no role in this paper.

We consider the classical definitions of finite and infinite ground trees. The
interested reader is referred to [3] for an exhaustive definition. A tree is said to
be partial if it contains ⊥ at some node. Otherwise, the tree is total. The algebra
of finite and infinite trees are respectively denoted by FT and IT . Besides, we
also refer to [4] for the definitions that do not appear in this paper.

A term (or constructor term) is either a variable v ∈ V or an expression
f(t1, . . . , tn) where f/n ∈ FΣ and t1, . . . , tn are terms. For any terms t and s,
the expression t[s] denotes that s occurs in t. For any n > 0, an n-tuple of terms
is denoted by 〈t1, . . . , tn〉 and abbreviated by t. When convenient, we also treat t
as the set of its components. As for the case of trees, a term t is said to be partial
if t = s[⊥], and t is total otherwise. We denote by Var(t) the set of variables

occurring in t. Besides, a term is said to be ground iff it is variable-free. The size
of a term t is the number of function symbols occurring in t.

A sentence φ is an arbitrary first-order formula built with Σ. In our case,
the only predicate symbol is ==. Thus, atomic formulas are true, false, strict
equations t1 == t2 or negated equations ¬t1 == t2. Being r = 〈r1, . . . , rn〉 and
s = 〈s1, . . . , sn〉, r == s (resp. ¬r == s) abbreviates r1 == s1 ∧ . . . ∧ rn == sn

(resp. ¬r1 == s1∨. . .∨¬rn == sn). Sentences may use propositional connectives
(¬,∧,∨,→,↔) and quantifiers (∃,∀). Q stands for both kinds of quantifiers.
Free(φ) denotes the set of free variables of φ. If Free(φ) = ∅, then φ is closed.
φQ denotes the Q-closure of φ and φQ\w denotes Qv φ, where v = Free(φ) \ w.

Now we recall some semantics of first-order logic. An interpretation A is a
carrier set A together with interpretations fM, pM for the symbols in Σ. Given
A, an assignment σ maps variables to values in A; if φσ is true (according to
standard rules for truth-valuation) in A, we say that σ is a solution (in A) of
φ. A models φ, written A |= φ, if all assignments are solutions in A of φ. Notice
that, for given A, φ and σ, σ must be a solution in A of either φ or ¬φ; moreover,
if φ is closed, either A |= φ or A |= ¬φ (the latter being equivalent to A 6|= φ).

A theory T is a set of closed sentences. A is a model of T , written A |= T ,
if A |= φ for each φ ∈ T . A formula φ is a logical consequence of T , written
T |= φ, if A |= φ whenever A |= T . This notation extends naturally to sets Φ of
formulas. A sentence φ is satisfiable (or solvable) in T , if T |= φ∃. Two sentences
φ1 and φ2 are (logically) equivalent in T , denoted by φ1 ≡ φ2, if T |= φ1 ↔ φ2.
A theory T is complete iff for any closed sentence φ either T |= φ or T |= ¬φ
holds. The theory TA of A is the set of all closed φ such that A |= φ. Note that
TA is always complete. A1 and A2 are elementarily equivalent if TA1 = TA2 .
A complete axiomatization of A is a theory S ⊆ TA such that S |= TA (or,
equivalently, S is a complete theory and A |= S). Usually one is interested in
recursive axiomatizations where the property ‘φ ∈ S’ is decidable.

Given two sentences φ1 and φ2, a transformation rule φ1 7→ φ2 replaces
any occurrence of φ1 in a formula (module variable renaming) with φ2. The
application of a transformation rule R to φ1 yielding φ2 is denoted by φ1 ;R φ2.
A transformation rule R is said to be correct in a theory T iff for any two formulas
φ1 and φ2 such that φ1 ;R φ2 we have that φ1 ≡ φ2.

3 An Axiomatization of Strict Equality

Strict equality is a particular case of classical equality where, besides being
syntactically equal, two terms have to be finite and total to be strictly equal.

Definition 1 (Strict equality). Two trees t1 and t2 are strictly equal, denoted
by t1 == t2, iff t1 and t2 are the same finite and total tree. ut

Strict equality allows us to characterize the subset of IT consisting of finite
and total trees: x is a finite and total tree ⇐⇒ x == x.

In Figure 1, we propose an axiomatization of infinite trees with strict equal-
ity, which is similar, but not equal, to the one of finite trees with equality given

(A1) For every f/n ∈ FΣ such that f 6= ⊥

∀x ∀y (f(x) == f(y) ↔ x == y)

(A2) For every f/n, g/m ∈ FΣ such that f 6= g

∀x ∀y ¬f(x) == g(y)

(A3) For every term t[x] except x such that y = Var(t[x]) \ {x}

∀x ∀y ¬x == t[x]

(A4) Bottom: ∀x ¬x == ⊥

(A5) Symmetry: ∀x ∀y (x == y → y == x)

(A6) Transitivity: ∀x ∀y ∀z (¬x == y ∨ ¬y == z ∨ x == z)

(A7) Domain Closure Axiom or DCA: % only for finite signatures

∀x (¬x == x ∨
W

f/n∈FΣ
∃w x == f(w))

Fig. 1. Axiomatization of Infinite Trees with Strict Equality

in [12]. The main difference comes from the fact that strict equality is not reflex-
ive: because of A3 and A4, non-finite/non-total trees are not strictly equal to
themselves. Due to this property, ⊥ and the remaining functions in FΣ have a
different treatment. We distinguish two cases, depending on whether Σ is either
finite or infinite. In the case of infinite signatures, the axiomatization of strict
equality over IT consists of A1 −A6

2 and is denoted by Einf . For finite signa-
tures, the axiomatization also includes A7 and is denoted by Efin. Axiom A7

is an adaptation of the Domain Closure Axiom introduced in [14] to the case of
==, which prevents the existence of isolated finite and total trees in the algebra.
Note that A7 does not provide any information about non-finite/non-total trees.

To simplify statements and reasonings, we will frequently use E to refer indis-
tinctly to Einf and Efin for the respective cases of infinite and finite signatures.

We will also abuse of notation IT to refer either to the set of infinite trees
or the interpretation with IT as carrier and symbols in Σ interpreted in the
natural way (symbols in FΣ as free constructors and == as strict equality).

Three basic questions about E arise: Are the axioms of E correct for IT ? Are
there enough axioms as to characterize ==? Are there too many? The first and
third questions are addressed in the next proposition. The second one concerns
completeness of E , and is far from being a trivial question. It will be proved
by means of a decision procedure based on some equivalences under E used as
transformation rules for quantifier elimination.

2 To be more precise, A1 − A3 are axiom schemes where A3 embodies an infinite
number of instances (also A1 and A2 in the case of infinite signatures). To simplify
notation, A4 −A7 can be also taken as axiom schemes with a single instance.

Theorem 1 (Correctness and minimality of E).

(i) IT |= E.
(ii) E \Ai is not a complete theory for any (axiom scheme) Ai in E.

Sketch of the proof. A direct inspection of E proves (i). For (ii), it is enough to
prove that E \Ai is not complete for each axiom Ai taken from E . This is proved
by giving a model M of E \Ai and a closed formula ϕ that is valid in M but
not in IT (therefore ¬ϕ is valid in IT). Since M and IT are both models of
E \ Ai, neither ϕ nor ¬ϕ can be deduced from E \ Ai, which therefore is not
complete. Let us examine E \Ai for a couple of interesting cases. We assume a
constant a and a function symbol f/n (n > 0, say n = 1 for simplicity) in FΣ .

(A1) We build a modelM of E\A1 as follows: the carrier and the interpretation
of symbols are as in the standard interpretation IT , with the exception that
fM(⊥) is defined to be the tree f(a) (instead of being the tree f(⊥), as
in the standard IT). It is not difficult to see that M is indeed a model of
E \ A1. Now we can take ϕ = f(⊥) == f(a) as the desired formula such
that M |= ϕ and IT |= ¬ϕ.

(A3) In this case, the carrier of M is the set of possibly partial infinite trees
built with FΣ ∪ {b/0}, where b is a new constant. All symbols in Σ are
interpreted as usual, except that fM(b) is defined to be the tree b instead
of being the tree f(b) (that exists also in the carrier). It can be seen that
M is a model of E \A3. Note that b ==M fM(b) holds in the carrier. This
does not contradict the axiom scheme A2 (because ∀x¬b == f(x) is not
an instance of A2, as b is not in the original Σ), but serves to show that
M |= ϕ where ϕ = ∃x x == f(x). However IT |= ¬ϕ, since ¬ϕ is equivalent
to ∀x ¬x == f(x), which is an instance of A3. ut

Remark. IT |= E is proved by direct inspection. In particular, A3 is correct
since, by definition, infinite trees are not strictly equal. Regarding minimality,
we cannot replace (ii) by the stronger result “no stricter subset of E is a complete
theory”. The reason is that some instances of A3 can be skipped from E without
losing completeness. For example, as discussed also in [11] for true equality, the
formula ∀x ¬x == f(x) follows from ∀x ¬x == f(f(x)) (and A1, A6). ut

Finally, we show that == satisfies the following weak version of reflexivity.

Proposition 1. E |= ∀x (x == x ↔ ∃y x == y)

Proof. One implication is trivial. The reverse implication is proved by symmetry
and transitivity. ut

4 A Decision Method for Strict Equality

In this section, we prove that the theory of strict equality is decidable by pro-
viding an algorithm that transforms any initial constraint into an equivalent dis-
junction of formulas in solved form. This algorithm is based on the well-known

Bottom
(B1) x == t[⊥] 7→ false
(B2) ¬x == t[⊥] 7→ true

Non-finite trees

(NFT1) ¬x == x ∧ ¬r == s[x] 7→ ¬x == x
(NFT2) ¬x == x ∧ r == s[x] 7→ false
(NFT3) ∀y ¬x == y 7→ ¬x == x

Finite trees
(FT) x == x ∧ r == s[x] 7→ r == s[x]

Decomposition

(D1) f(r1, . . . , rn) == f(s1, . . . , sn) 7→ r1 == s1 ∧ . . . ∧ rn == sn

(D2) ¬f(r1, . . . , rn) == f(s1, . . . , sn) 7→ ¬r1 == s1 ∨ . . . ∨ ¬rn == sn

Clash
(C1) f(r1, . . . , rm) == g(s1, . . . , sn) 7→ false if f 6= g
(C2) ¬f(r1, . . . , rm) == g(s1, . . . , sn) 7→ true if f 6= g

Occur-check
(O1) x == t[x] 7→ false if x 6= t[x]
(O2) ¬x == t[x] 7→ true if x 6= t[x]

Replacement

(R) x == t ∧ ϕ[x] 7→ x == t ∧ ϕ[x← t] if t is total and x 6∈ Var(t)

Existential quantification elimination

(EE1) ∃w (w == w ∧ ϕ) 7→ ϕ if w 6∈ Var(ϕ)
(EE2) ∃w (w == t ∧ ϕ) 7→ x == x ∧ ϕ if t is total, x = Var(t) and

w 6∈ Var(t) ∪ Var(ϕ)
(EE3) ∃w (¬w == w ∧ ϕ) 7→ ϕ if w 6∈ Var(ϕ)

Existential quantification introduction

(EI) r == s[x] 7→ ∃w (x == w ∧ r == s[x← w])

Universal quantification elimination

(UE) ∀y (¬y == t ∨ ϕ) 7→ ¬x == x ∨ ϕ[y ← t] if t is total, x = Var(t)
and y 6∈ Var(t)

Tautology
(T) ϕ 7→ ϕ ∧ (x == x ∨ ¬x == x)

Split

(S) ¬∃w∃z (x == t[w] ∧ ϕ[w · z]) 7→ ¬∃w (x == t[w]) ∨
∃w (x == t[w] ∧ ¬∃z ϕ[w · z])

Fig. 2. Transformation Rules

technique of quantifier elimination, as the algorithms proposed in [4, 12] for the
equality theory. As in the above cited works, we distinguish two cases depending
on whether the signature is finite or infinite. In the next subsections, we first
provide a decision algorithm for the case of infinite signatures and then adapt
that algorithm for finite ones. Those decision methods use the transformation
rules introduced in Figure 2. Note that some conditions in rules, like those of R,
are not necessary for correctness. Instead, they serve to discard the application
of some rules when there exist more suitable ones. Some other basic transforma-
tions that are trivially correct in first-order logic, such as De Morgan’s laws or
double negation elimination, are also implicitly used in the decision methods.

Next, we prove that the transformation rules in Figure 2 are correct.

Theorem 2. The transformation rules in Figure 2 are correct in E.

Proof. See Appendix. ut

4.1 Infinite Signatures

In order to provide a decision algorithm, we first define a solved form for infinite
signatures, called basic formula. Then, we show that two basic Boolean opera-
tions —conjunction and negation— can be performed on basic formulas. And,
finally, we describe the decision algorithm.

Definition 2. A basic formula for the variables x is either true, false (closed
basic formulas) or a constraint ∃w c(x,w) such that

c(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

(¬wi == sij)∀\w

where − x = x1 ∪ x2 and x1 ∩ x2 = ∅,
− w = Var(t) and x ∩ w = ∅,
− if sij is a variable, then sij ∈ w, otherwise sij is total, wi 6∈ Var(sij)

and Var(sij) ∩ x = ∅ for every wi ∈ w and 1 ≤ j ≤ ni.
A formula is in basic normal form (or BNF) if it is of the form Qy ϕ[x ·y] where
ϕ is a disjunction of basic formulas for x · y. ut

Example 1. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2, x3} ⊂ V. The sentences
∃w (¬x1 == x1∧x2 = g(w1)∧x3 == g(w2)∧¬w1 == w2∧∀v ¬w2 == f(a, v)),
(¬x1 == x1 ∧ ¬x2 == x2 ∧ ¬x3 == x3) and true are basic formulas for x. ut

First, we will show that the notion of basic formula is a solved form.

Theorem 3. Any basic formula different from false is satisfiable in Einf .

Proof. The constraint true is trivially satisfiable. Thus, let us consider a basic
formula for the variables x of the form

∃w (
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

(¬wi == sij)∀\w).

The conjunction
∧

x1∈x1 ¬x1 == x1 is trivially satisfiable since the variables x1

do not occur in the rest of the basic formula. Hence, each variable in x1 can
be assigned to a non-finite/non-total term without restrictions. The conjunction
x2 == t is also satisfiable since it is an idempotent substitution. Therefore, we
focus on ϕ =

∧
wi∈w

∧ni

j=1(¬wi == sij)∀\w. Being a finite conjunction, the num-
ber of function symbols occurring in some negated equation is necessarily finite.
Thus, there exists an assignment to the variables w consisting of distinct finite
and total trees, each one of them starting by a function symbol not occurring in
ϕ. Hence, the basic formula is satisfiable. ut

Second, we describe the transformation of any universally quantified disjunc-
tion of negated equations into an equivalent disjunction of basic formulas.

Proposition 2. Any universally quantified disjunction of negated equations

∀v (¬w1 == t1 ∨ ¬w2 == t2 ∨ . . . ∨ ¬wn == tn) (1)

where wi 6∈ v for each 1 ≤ i ≤ n can be transformed into an equivalent disjunction
of basic formulas for the variables x = Var(t1, . . . , tn) \ v.

Proof. If n = 0, then the proof is trivial. Assuming that n > 0, formula (1) is
transformed into

∀v1 (¬w1 == t1) ∨ ∃v1 (w1 == t1 ∧ ∀v2 [¬w2 == t2 ∨ . . . ∨ ¬wn == tn]︸ ︷︷ ︸
ϕ

)

using S, where v1 = Var(t1) ∩ v and v2 = v \ v1. The formula ∀v1 (¬w1 == t1)
can be transformed into a disjunction of basic formulas for x by applying the
rule T on each variable from x and the rules NFT1, EI and R on w1. Using the
same transformation, ϕ can be transformed into a disjunction of basic formulas
for the variables x \w1 which, in conjunction with w1 == t1, is a disjunction of
basic formulas for x. ut

Then, we describe the basic Boolean operations on basic formulas.

Proposition 3. A conjunction of disjunctions of basic formulas for x can be
transformed into an equivalent disjunction of basic formulas for x.

Proof. It suffices to show that a conjunction of two basic formulas for the vari-
ables x can be transformed into an equivalent disjunction of basic formulas for
x. The extension to the general case is trivial. Let us consider the following two
constraints:

c1(x,w1) =
∧

x1∈x11

¬x1 == x1 ∧ x21 == t
1 ∧

∧
w1

i∈w1

n1
i∧

j=1

(¬w1
i == s1ij)

∀\w1

c2(x,w2) =
∧

x1∈x12

¬x1 == x1 ∧ x22 == t
2 ∧

∧
w2

i∈w2

n2
i∧

j=1

(¬w2
i == s2ij)

∀\w2

If either x11 6= x12 or t1 and t2 do not unify, then

∃w1 c1(x,w1) ∧ ∃w2 c2(x,w2) ≡ false

(by rules NFT2 and C1 respectively). Otherwise, x11 = x12 (thus, x21 = x22),
σ = mgu(t1, t2) and the conjunction c1(x,w1) ∧ c2(x,w2) is equivalent (by rules
R, D1, EE2 and FT/EE1) to

∧
x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

w1
i∈w1

n1
i∧

j=1

(¬w1
i σ == s1ijσ)∀\w

∧
∧

w2
i∈w2

n2
i∧

j=1

(¬w2
i σ == s2ijσ)∀\w

where x1 = x11 = x12, x2 = x21 = x22, t = mgi(t1, t2) and w = Var(t).
Then, using D2, C2 and UE, each negated equation (¬wk

i σ == sk
ijσ)∀\w for

1 ≤ j ≤ nk
i , wk

i ∈ wk and k ∈ {1, 2} is transformed into true, false or an
equivalent disjunction of the form

(¬w′ == w′) ∨
∀v (¬w1 == s′1 ∨ ¬w2 == s′2 ∨ . . . ∨ ¬wm == s′m) (2)

where w′ ⊆ w, wi ∈ w for each 1 ≤ i ≤ m. If v = ∅, then (2) is transformed is
transformed into a disjunction of basic formulas for w (as proposed in Proposition
2). Then, the whole formula is simplified by distribution. Note that a conjunction
of x2 == t[w] ∧ ¬w == w is easily reduced to false by rule NFT2. For the
remaining cases, we use rules R, EE2 and FT/EE1 on the variables w. After
using the rule R, we may have to simplify the conjunction of negated equations
as above. However, this process clearly ends since the depth of universal variables
strictly decreases at each iteration. ut

In the next example, we show the transformation of a conjunction of two basic
formulas into an equivalent disjunction of basic formulas for the same variables.

Example 2. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2, x3} ⊂ V. The conjunction
of basic formulas for x ϕ1 = ∃w1 c1(x,w1) ∧ ∃w2 c2(x,w2) where

c1(x,w1) = ¬x1 == x1 ∧ x2 == w1
1 ∧ x3 == g(w1

2) ∧ ∀v ¬w1
1 == f(a, v)

c2(x,w2) = ¬x1 == x1 ∧ ¬x2 == x2 ∧ x3 == f(w2
1, w

2
2) ∧ ¬w2

1 == w2
2

is unsatisfiable since x2 == w1
1 ∧ ¬x2 == x2 is reduced to false by NFT2. On

the contrary, the conjunction ϕ2 = ∃w1 c1(x,w1) ∧ ∃w3 c3(x,w3) where

c3(x,w3) = ¬x1 == x1 ∧ x2 == f(w3
1, w

3
2) ∧ x3 == w3

1 ∧ ∀v ¬w3
2 == g(v)

is transformed in the following way. Since σ = mgu(w1
1 · g(w1

2), f(w3
1, w

3
2) ·w3

1) =
{w1

1 ← f(g(w1
2), w

3
2), w

3
1 ← g(w1

2)}, ϕ2 is transformed into

∃w1
2 · w3

2 (¬x1 == x1 ∧ x2 == f(g(w1
2), w

3
2) ∧ x3 == g(w1

2) ∧
∀v ¬f(g(w1

2), w
3
2) == f(a, v) ∧ ∀v ¬w3

2 == g(v)).

Then, the negated equation ∀v ¬f(g(w1
2), w

3
2) == f(a, v) is reduced to true

using rules D2 and C2. Thus, the resulting basic formula is

∃w1
2 ·w3

2 (¬x1 == x1∧x2 == f(g(w1
2), w

3
2)∧x3 == g(w1

2)∧∀v ¬w3
2 == g(v)). ut

Proposition 4. A negated disjunction of basic formulas for the variables x can
be transformed into an equivalent disjunction of basic formulas for x.

Proof. It suffices to show that a negated basic formula for the variables x can be
transformed into an equivalent disjunction basic formulas for x. By Proposition
3, the extension to the general case is straightforward.

Let us consider the following negated basic formula for the variables x:

¬∃w (
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

¬wi == sij)

By distribution, the above formula is transformed into

∨
x1∈x1

x1 == x1 ∨ ¬∃w (x2 == t ∧
∧

wi∈w

ni∧
j=1

¬wi == sij)

where each x1 == x1 from the first subformula is transformed into a disjunction
of basic formulas for x by applying the rule T on each variable from x\x1. Using
the rule S, the second subformula is transformed into

¬∃w (x2 == t) ∨ ∃w (x2 == t ∧ ¬
∧

wi∈w

ni∧
j=1

¬wi == sij).

By Proposition 2, ¬∃w (x2 == t) is transformed into a disjunction of basic
formulas for x2. Besides, after simplification and double negation elimination,
the remaining subformula is transformed into a disjunction of basic formulas
for x2 using rules R, EE2, FT and EE1 on wi == sij for each wi ∈ w and
1 ≤ j ≤ ni. Finally, basic formulas for x2 are transformed into basic formulas
for x using rules T and EI on each variable from x1. ut

Example 3. Let {a/0, f/2} ⊂ FΣ and x = {x1, x2} ⊂ V. The negated basic
formula for the variables x

ϕ = ¬∃w (¬x1 == x1 ∧ x2 == f(w, a) ∧ ∀v ¬w == f(a, v))

(EE4) ∃w (v == v ∧
n̂

i=1

(¬si == ti)
∀\w ∧ ϕ) 7→ ϕ

if w ∩ Var(ϕ) = ∅, v ⊆ w, si 6= ti, w ∩ Var(si, ti) 6= ∅ and either
si (resp. ti) is not a variable or si ∈ w (resp. ti ∈ w) for each 1 ≤ i ≤ n

Fig. 3. Existential Quantification Elimination: Infinite Signatures

is transformed as follows. First, ϕ is trivially equivalent to (x1 == x1) ∨
¬∃w (x2 == f(w, a) ∧ ∀v ¬w == f(a, v)), where (x1 == x1) is transformed
into the following basic formulas for x

∃w1 (¬x2 == x2 ∧ x1 == w1) ∨ ∃w2 · w3 (x1 == w2 ∧ x2 == w3)

using T, EI, R and FT. Besides, the remaining subformula is transformed into
¬∃w (x2 == f(w, a)) ∨ ∃w (x2 == f(w, a) ∧ ¬∀v ¬w == f(a, v)) using the
rule S. The constraint ¬∃w (x2 == f(w, a)) is transformed into

(¬x1 == x1 ∧ ¬x2 == x2) ∨ ∃w4 (¬x2 == x2 ∧ x1 == w4) ∨
∃w5 (¬x1 == x1 ∧ x2 == w5 ∧ ∀v ¬w5 == f(v, a)) ∨
∃w6 · w7 (x1 == w6 ∧ x2 == w7 ∧ ∀v ¬w7 == f(v, a))

using T, EI, R and NFT1. Finally, ∃w (x2 == f(w, a)∧¬∀v ¬w == f(a, v)) ≡
∃w (x2 == f(w, a) ∧ ∃v w == f(a, v)) is transformed into

∃w8 (¬x1 == x1 ∧ x2 == f(f(a,w8), a)) ∨
∃w9 · w10 (x1 == w9 ∧ x2 == f(f(a,w10), a))

using rules R, EE2 and FT on w, and T and EI on x1. ut

Next, we show that the elimination of the innermost block of quantifiers is
correct in Einf when it is existential. For this purpose, we introduce the transfor-
mation rule EE4 (see Figure 3), which allows to eliminate existential variables
only occurring in a conjunction of (universally quantified) negated equations.

Proposition 5. The transformation rule EE4 is correct in Einf .

Proof. We have to prove that

Einf |= [∃w (v == v ∧
n∧

i=1

(¬si == ti)∀\w ∧ ϕ) ↔ ϕ].

One implication is trivial. For the reverse one, it suffices to show the existence
of a witness for w. Since ψ =

∧n
i=1(¬si == ti)∀\w is a finite conjunction, we

can use as witness any ground term such that its root function does not occur
in ψ. ut

Given any constraint ϕ0 with free variables x0:

(Step 1) Transform ϕ0 into a prenex DNF formula ϕ1 = Q1x
1 . . . Qnx

n Wm
i=1 ψi

(Step 2) For each 1 ≤ i ≤ m, transform ψi into a disjunction of basic formulas
for the variables x = x0 · x1 · . . . · xn as follows:
(a) Apply rules B1, B2, NFT1, NFT2, NFT3, FT, D1, D2, C1, C2, O1

and O2. When none of the previous rules applies, it remains a disjunction
of constraints of the form ψ′i =

Vo1
j=1 vj == rj ∧

Vo2
j=o1+1 ¬vj == rj

where vi is a variable, rj is total and vj 6∈ Var(rj) for each 1 ≤ j ≤ o2.
(b) For each conjunct ψ′i that results from (a) and each variable x ∈ x:

• If x = vj for some 1 ≤ j ≤ o1, then apply R on x.
• If x 6= vk for every 1 ≤ j ≤ o1 and x ∈ Var(rk) for some 1 ≤ k ≤ o1,

then apply EI and R on x.
• Otherwise, apply T on x and goto (a).

The resulting formula ϕ2 = Q1x
1 . . . Qnx

n Wm′

i=1 ∃w
i ai(x,w

i) is in BNF
(Step 3) Iteratively eliminate the innermost block of consecutive existen-

tial/universal quantifiers Qnx
n in ϕ2:

(i) If Qn = ∃, by Theorem 4 (Theorem 7 for finite signatures) the formula

ϕ2 is equivalent to Q1x
1 . . . Qn−1x

n−1 Wm′

i=1 ∃w
′i a′i(x

′, w′i)
(ii) If Qn = ∀, then apply (i) using double negation as follows

Q1x
1 . . .¬∃xn ¬

Wm′

i=1 ∃w
i ai(x,w

i). Negation on basic formulas is there-
fore used before and after applying (i).

Fig. 4. A Decision Method for Strict Equality

Finally, the elimination of the innermost block of existential quantifiers is
used in the decision algorithm given in Figure 4.

Theorem 4. Let ∃w a(x · y, w · z) be a basic formula for x · y of the form

∃w · z (
∧

x1∈x1

¬x1 == x1 ∧
∧

y1∈y1

¬y1 == y1 ∧ x2 == t ∧ y2 == r ∧ ϕ ∧ ψ)

where − w = Var(t) and z = Var(r) \ w,
− ϕ is a finite conjunction of negated equations such that Free(ϕ) ⊆ w,
− ψ =

∧n
i=1(¬vi == si)∀\w·z and (vi ∪ Var(si)) ∩ z 6= ∅ for 1 ≤ i ≤ n.

The formulas ∃y [∃w a(x · y, w · z)] and ∃w (
∧

x1∈x1 ¬x1 == x1∧x2 == t∧ϕ)
are equivalent in Einf .

Proof. It follows from rules EE1, EE2, EE3 and EE4. ut

Example 4. Let {a/0, g/1, f/2} ⊂ FΣ . The formulas

∃y [∃w1 · w2 (x == g(w1) ∧ y == f(w2, a) ∧ ¬w1 == a ∧
¬w1 == w2 ∧ ∀v ¬w2 == f(a, v))]

and ∃w1 (x == g(w1) ∧ ¬w1 == a) are equivalent in Einf . ut

The algorithm described in Figure 4 is illustrated in the next example.
Roughly speaking, we first transform the input constraint ϕ into an equiva-
lent formula in basic normal form. Then, we proceed to iteratively eliminate the
innermost block of quantifiers Qix

i. By Theorem 4, the elimination of Qix
i is

trivial when Qi is existential. However, when Qi is universal, we have to use
double negation to turn Qi into existential. This process requires to negate the
matrix of the formula and to transform it into an equivalent disjunction of basic
formulas for the same variables before and after the elimination of Qi. In both
cases, the length of the block of consecutive quantifiers strictly decreases at each
elimination step because no new variable is introduced in the prefix. Hence, since
the length of the prefix is finite, the algorithm always terminates and transforms
ϕ into an equivalent disjunction of basic formulas for its free variables.

Example 5. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2} ⊂ V. The constraint

∀x [(f(x1, a) == f(g(x2), x2)∧¬g(x2) == g(g(x1))) ∨ f(x1, x2) == f(x2, x1)]

is already in prenex disjunctive normal form, thus Step 1 is not applicable. In
Step 2, the formula is first transformed into

∀x [(x1 == g(x2) ∧ x2 == a ∧ ¬x2 == g(x1)) ∨ x1 == x2]

using D1 and D2. Next, the formula is transformed into basic normal form

∀x [(x1 == g(a) ∧ x2 == a) ∨ ∃w (x1 == w ∧ x2 == w)]

using R, C2 and EI. Next, in Step 3, we proceed to eliminate ∀x (case (ii)).
Using double negation, we obtain

¬∃x [¬(x1 == g(a) ∧ x2 == a) ∧ ¬∃w (x1 == w ∧ x2 == w)]

that is transformed into

¬∃x [(¬x1 == x1 ∧ ¬x2 == x2) ∨ ∃w (¬x1 == x1 ∧ x2 == w) ∨
∃w (¬x2 == x2 ∧ x1 == w ∧ ¬w == g(a)) ∨
∃w (x1 == w1 ∧ x2 == w2 ∧ ¬w1 == g(a) ∧ ¬w1 == w2) ∨
(¬x2 == x2 ∧ x1 == g(a)) ∨
∃w (x1 == g(a) ∧ x2 == w ∧ ¬w == a ∧ ¬w == g(a))]

by negation and conjunction of basic formulas. Then, ∃x can be eliminated and
we obtain ¬[true], which is trivially equivalent to false. ut

As an easy but important consequence of having a decision method, we obtain
the completeness of our axiomatization Einf .

Theorem 5 (Completeness of Einf). Einf is a complete theory.

Existential Quantification Elimination

(EE5) ∃w (v == v ∧
n̂

i=1

¬si == ti ∧ ϕ) 7→ ϕ

if w ∩ Var(ϕ) = ∅, v ⊆ w, si 6= ti and w ∩ Var(si, ti) = ∅ for 1 ≤ i ≤ n

Explosion

(E) ϕ[x] 7→ ϕ[x] ∧ [¬x == x ∨
_

f∈FΣ

∃w x == f(w)]

Fig. 5. Transformation Rules: Finite Signatures

Proof. Consider any closed formula φ. By using the decision method of Fig. 4 we
obtain a formula ψ in BNF such that Einf |= φ↔ ψ. Now, ψ must be also closed
(since the transformation rules do not introduce new free variables in a formula),
and therefore ψ is a disjunction made of the atoms true or false (which are the
only closed basic formulas). Hence, ψ is equivalent to true or false. In the first
case, we have Einf |= φ↔ true, which implies Einf |= φ. In the second case, we
have Einf |= φ↔ false, and then Einf |= ¬φ. Therefore, Einf is complete. ut

4.2 Finite Signatures

In the case of finite signatures, the normal form provided in Definition 2 is not
solved. This arises from the fact that a finite conjunction of universally quantified
negated equations on a variable w may be unsatisfiable if only finite and total
trees can be assigned to w. For example, being FΣ = {a/0, g/1}, the constraint

∃w (x == w ∧ ¬w == a ∧ ∀v ¬w == g(v))

is unsatisfiable although ∃w (¬w == a∧∀v ¬w == g(v)) is satisfiable. Roughly
speaking, the question is that all the function symbols of the signature can be
used in a constraint.

Next, we show that Efin is a decidable theory. For this purpose, we adapt
all the definitions and results in Subsection 4.1 to the case of finite signatures.
Besides, we add two new transformation rules E and EE5 (see Figure 5). Rule
E, whose correctness directly follows from Axiom A7, allows for the elimination
of universal quantification whereas EE5, which is the adaptation of EE4 to
the case of finite signatures, makes possible to eliminate the innermost block of
existential quantifiers. Next, we show that both rules are correct in Efin.

Proposition 6. The transformation rules EE5 and E are correct in Efin.

Proof. The correctness of E is straightforward due to A7. Regarding to EE5,
we have to prove that

Efin |= [∃w (v == v ∧
n∧

i=1

¬si == ti ∧ ϕ) ↔ ϕ].

One implication is trivial. For the reverse one, it suffices to show the existence
of a witness for w. Assuming that m is the maximum size of any term occurring
in

∧n
i=1 ¬si == ti, we can use as witness a different ground term of size m + 1

for each variable in w. ut

The use of E for eliminating universal quantification is necessary because our
notion of solved form for finite signatures is free of universal variables.

Definition 3. A basic formula for the variables x is either true, false (closed
basic formulas) or a constraint ∃w c(x,w) such that

c(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

¬wi == sij

where − x = x1 ∪ x2 and x1 ∩ x2 = ∅,
− w = Var(t) and x ∩ w = ∅,
− if sij is a variable, then sij 6= wi, otherwise sij is total, Var(sij) ⊆ w
− and wi 6∈ Var(sij) for every wi ∈ w and 1 ≤ j ≤ ni.

A formula is in basic normal form (or BNF) if it is of the form Qy ϕ[x ·y] where
ϕ is a disjunction of basic formulas for x · y. ut

The notion of basic formula for finite signatures is also a solved form.

Theorem 6. Any basic formula different from false is satisfiable in Efin.

Proof. Obviously, the constraint true is satisfiable. Thus, let us consider a basic
formula for the variables x of the form

∃w (
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

¬wi == sij).

As in Theorem 3,
∧

x1∈x1 ¬x1 == x1∧x2 == t is trivially satisfiable. Regarding
ϕ =

∧
wi∈w

∧ni

j=1 ¬wi == sij , each negated equation eliminates either one possi-
ble assignment value to wi if sij is ground or an assignment value to w′ = Var(sij)
for each assignment value to wi if sij is not ground. The number of assignment
values to each variable is infinite, thus ϕ is necessarily satisfiable. ut

Note that the syntactical form provided in Def. 3 is a particular case of the
one in Def. 2. The only difference is that universal quantification is not allowed
in the case of finite signatures. Further, there exists a very simple transformation
using E from formulas as defined in Def. 2 into formulas as defined above.

Proposition 7. Any constraint of the form ϕ =
∧

wi∈w

∧ni

j=1(¬wi == sij)∀\w

can be transformed into an equivalent disjunction of basic formulas for w.

Proof. If ϕ is free of universal quantification, then it is transformed into an
equivalent disjunction of basic formulas for the variables w as shown in Step 2
(Figure 4). Otherwise, there exists some (¬wi == sij)∀\w such that Var(sij) 6⊆

w. In order to eliminate universal quantification, we apply E on wi and, after
distributing the new introduced disjunction, rules NFT1, R, D2 and C2. In
the resulting formula, the depth of the universal variables that come negated
equations of the form (¬wi == sij)∀\w is strictly smaller than the depth of the
universal variables in the original formula. Besides, the negated equations of the
form ∀v ¬wi == v (that is, when universal variables occur at depth 0), can be
replaced with ¬wi == wi by rule NFT3. Then, this last negated equation is
removed using either NFT2 or EE3. Thus, we can eliminate all the universal
variables by repeating the above described process. ut

Being ∃w c(x,w) a formula as described in Definition 2, the conjunction of
negated equations in c(x,w) is transformed into a disjunction of basic formulas
w as shown in Proposition 7. Then, the whole formula is transformed into an
equivalent disjunction of basic formulas for x using R, EE2 and FT. This result
allows us to easily adapt Propositions 3 and 4 to the case of finite signatures.

Example 6. Let FΣ = {a/0, g/1, f/2} and x = {x1, x2} ⊂ V. The constraint

∃w (¬x1 == x1 ∧ x2 == f(w, a) ∧ ∀v ¬w == f(a, v))

is transformed into a disjunction of basic formulas for x as follows. First, we
transform ∀v ¬w == f(a, v) into a disjunction of basic formulas for w using E:

∀v ¬w == f(a, v) ∧ [¬w == w ∨ w == a ∨ ∃z w == g(z) ∨
∃z w == f(z1, z2)]

≡ ¬w == w ∨ w == a ∨ ∃z w == g(z) ∨ (3)
∃z (w == f(z1, z2) ∧ ∀v ¬w == f(a, v))

The first three subformulas are already basic formulas for w. Regarding the last
one, it is transformed using rules R and D2 as follows

∃z (w == f(z1, z2) ∧ [¬z1 == a ∨ ∀v ¬z2 == v])
≡ ∃z (w == f(z1, z2) ∧ ¬z1 == a) ∨ ∃z (w == f(z1, z2) ∧ ∀v ¬z2 == v) (4)

where the second subformula is equivalent to false by rules NFT3 and NFT2.
Thus, ∀v ¬w == f(a, v) has been transformed into the disjunction of basic
formulas for w in (3, 4). Finally, the conjunction of the above disjunction and
¬x1 == x1 ∧ x2 == f(w, a) is transformed into

(¬x1 == x1 ∧ x2 == f(a, a)) ∨ ∃z (¬x1 == x1 ∧ x2 == f(g(z), a)) ∨
∃z (¬x1 == x1 ∧ x2 == f(f(z1, z2), a) ∧ ¬z1 == a)

using rules R, EE1 and NFT2. ut

Next, in order to be able to apply the algorithm in Figure 4 to the case of
finite signatures, we adapt the result in Theorem 4.

Theorem 7. Let ∃w a(x · y, w · z) be a basic formula for x · y of the form

∃w · z (
∧

x1∈x1

¬x1 == x1 ∧
∧

y1∈y1

¬y1 == y1 ∧ x2 == t ∧ y2 == r ∧ ϕ ∧ ψ)

where − w = Var(t) and z = Var(r) \ w,
− ϕ is a finite conjunction of negated equations such that Var(ϕ) ⊆ w,
− ψ =

∧n
i=1 ¬vi == si and (vi ∪ Var(si)) ∩ z 6= ∅ for each 1 ≤ i ≤ n.

The formulas ∃y [∃w a(x · y, w · z)] and ∃w (
∧

x1∈x1 ¬x1 == x1∧x2 == t∧ϕ)
are equivalent in Efin.

Proof. It follows from rules EE1, EE2, EE3 and EE5. ut

Finally, and similarly to the case of infinite signatures (Th. 5), we obtain:

Theorem 8 (Completeness of Efin). Efin is a complete theory. ut

5 Conclusions and Future Work

We have given an axiomatization E of the theory of strict equality over IT ,
the algebra of possibly infinite and partial trees, both for the cases of infinite
and finite signatures. The notion of strict equality over that kind of trees is of
particular interest for functional and functional-logic programming. Besides, we
have provided a decision algorithm —which proves that the axiomatization is
complete— based on the use of solved forms and quantifier elimination. Further,
it is easy to see that the problem of deciding first-order equality constraints of
finite trees can be reduced to the decision problem of the theory of infinite trees
with strict equality: it suffices to restrict the value of every variable x in any
formula to be a finite and total tree by assertions of the form x == x. Thus,
it follows from the results in [5, 15] that the decision problem of the theory of
infinite trees with strict equality is non-elementary (as lower bound).

In this paper, we have focused on the algebra IT of possibly infinite and
partial trees. However, as a side product of our results, we can derive interesting
consequences also for the algebra FT of finite and possibly partial trees. In
particular, it is easy to see that FT |= E . Since E is a complete theory, it follows
that E is also a complete axiomatization of == over FT and, therefore, we
conclude that IT and FT are elementarily equivalent (when the language of
== is considered). We remark that this does not happen for infinite and finite
trees when true equality (≈) is considered.

Although direct applications of our results have been left out of the focus of
the paper, we foresee some potential uses that will be subject of future work:
Herbrand constraint solvers present in existing functional-logic languages, essen-
tially corresponding to existential constraints, could be enhanced to deal with
more general formulas. Constructive failure [10, 8], the natural counterpart of
constructive negation in the functional logic field, could also take profit of our
methods, specially for the case of programs with extra variables, not considered

in the mentioned papers. For these envisaged continuations of our work it could
be convenient to extend the theory and methods of this paper by adding two
additional predicate symbols: strict disequality (a computable approximation of
negation of strict equality) and true equality.

References

1. P. Arenas-Sánchez, A. Gil-Luezas, and F. J. López-Fraguas. Combining lazy nar-
rowing with disequality constraints. In M. V. Hermenegildo and J. Penjam, editors,
PLILP’94, volume 884 of LNCS, pages 385–399. Springer-Verlag, 1994.

2. E. J. G. Arias, J. Mariño-Carballo, and J. M. R. Poza. A proposal for disequality
constraints in curry. Electr. Notes Theor. Comput. Sci., 177:269–285, 2007.

3. A. Colmerauer. Equations and inequations on finite and infinite trees. In K. L.
Clark and S. A. Tärnlund, editors, FGCS’84, pages 85–99, 1984.

4. H. Comon and P. Lescanne. Equational problems and disunification. Journal of
Symbolic Computation, 7(3/4):371–425, 1989.

5. K. J. Compton and C. W. Henson. A uniform method for proving lower bounds
on the computational complexity of logical theories. Annals of Pure and Applied
Logic, 48(1):1–79, 1990.

6. K. Djelloul, T.-B.-H. Dao, and T. W. Frühwirth. Theory of finite or infinite trees
revisited. TPLP, 8(4):431–489, 2008.

7. M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www.informatik.uni-kiel.de/~curry/report.html, March 2006.

8. F. J. López-Fraguas and J. Sánchez-Hernández. Failure and equality in functional
logic programming. Electr. Notes Theor. Comput. Sci., 86(3), 2003.

9. F. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declarative
system. In Proc. Rewriting Techniques and Applications (RTA’99), pages 244–247.
Springer LNCS 1631, 1999.

10. F. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to failure
in functional logic programming. TPLP, 4(1&2):41–74, 2004.

11. M. Maher. Complete axiomatizations of the algebras of finite, rational and infinite
trees. Technical report, IBM T.J. Watson Research Center, 1988. Available at
http://www.cse.unsw.edu.au/~mmaher/pubs/trees/axiomatizations.pdf.

12. M. J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In LICS’1988, pages 348–357. IEEE Computer Society, 1988.

13. S. e. Peyton Jones. Haskell 98 Language and Libraries. The Revised Report. Cam-
bridge Univ. Press, 2003.

14. R. Reiter. On closed world data bases. Logic and Data Bases, pages 55–76, 1978.
15. S. G. Vorobyov. An improved lower bound for the elementary theories of trees.

In M. A. McRobbie and J. K. Slaney, editors, CADE-13, volume 1104 of LNCS,
pages 275–287. Springer-Verlag, 1996.

Appendix

In order to prove Theorem 2, we first prove the following auxiliary results.

Proposition 8. Replacement (R) is correct in E.

Proof. We have to prove that

E |= [(x == t ∧ ϕ[x]) ↔ (x == t ∧ ϕ[x← t])]∀.

The proof is made by structural induction on ϕ.
The base case, that is ϕ = r == s[x], is proved by induction on the size n of

s[x]. In the base case n = 0, we have that s[x] = x and

E |= [(x == t ∧ r == x) ↔ (x == t ∧ r == t)]∀

directly follows from transitivity. Assuming as induction hypothesis that

E |= [(x == t ∧ r == s[x]) ↔ (x == t ∧ r == s[x← t])]∀ (5)

holds for any term s[x] of size equal to or smaller than n, we have to prove
that (5) holds for any term s[x] of size n + 1. By Proposition 1, we know that
x == t ∧ r == s[x] ≡ x == t ∧ r == s[x] ∧ s[x] == s[x]. Besides, since
s[x] = f(u) for some function f ∈ FΣ and some tuple of terms u, we have that
x == t ∧ r == s[x] ∧ s[x] == s[x] ≡ x == t ∧ r == s[x] ∧ u == u by Axiom
A1, where the size of each u ∈ u is equal to or smaller than n. By the induction
hypothesis, x == t∧ r == s[x]∧u == u ≡ x == t∧ r == s[x]∧u == u[x← t].
Thus, also by Axiom A1, we have that x == t ∧ r == s[x] ∧ u == u[x ← t] ≡
x == t ∧ r == s[x] ∧ s[x] == s[x ← t]. Finally, by transitivity, we know that
x == t ∧ r == s[x] ∧ s[x] == s[x ← t] ≡ x == t ∧ r == s[x ← t] and, hence,
(5) holds for any term s[x] of size n+ 1.

For the inductive case, we just prove the case for connectives ¬,∧ and quan-
tifier ∃, since the proof for connectives ∨,→,↔ and quantifier ∀ directly follows
from it.

If ϕ = ¬ψ, then we have to prove that

E |= [(x == t ∧ ¬ψ[x]) ↔ (x == t ∧ ¬ψ[x← t])]∀

assuming that E |= [(x == t ∧ ψ[x]) ↔ (x == t ∧ ψ[x ← t])]∀. For any
solution σ of x == t, if σ is a solution of ¬ψ[x], then it cannot be a solution
of ψ[x]. Hence, by induction hypothesis, σ is not a solution of ψ[x ← t] and,
therefore, σ is a solution of ¬ψ[x← t].

If ϕ = ψ1 ∧ ψ2, then we have to prove that

E |= [(x == t ∧ ψ1[x] ∧ ψ2[x]) ↔ (x == t ∧ ψ1[x← t] ∧ ψ2[x← t])]∀

assuming that E |= [(x == t ∧ ψ1[x]) ↔ (x == t ∧ ψ1[x ← t])]∀ and
E |= [(x == t ∧ ψ2[x]) ↔ (x == t ∧ ψ2[x ← t])]∀. For any solution σ of
x == t ∧ ψ1[x] ∧ ψ2[x], σ is also solution of x == t ∧ ψ1[x] and x == t ∧ ψ2[x].

Hence, by induction hypothesis, σ is solution of both x == t ∧ ψ1[x ← t] and
x == t ∧ ψ2[x ← t] and, therefore, the substitution σ is also a solution of
x == t ∧ ψ1[x← t] ∧ ψ2[x← t].

Finally, if ϕ = ∃w ψ, then we have to prove that

E |= [(x == t ∧ ∃w ψ[x]) ↔ (x == t ∧ ∃w ψ[x← t])]∀

assuming that E |= [(x == t ∧ ψ[x]) ↔ (x == t ∧ ψ[x ← t])]∀. In this
case, the proof directly follows from the induction hypothesis since any solution
of x == t ∧ ψ[x] (resp. x == t ∧ ψ[x ← t]) is also solution of x == t ∧ ∃w ψ[x]
(resp. x == t ∧ ∃w ψ[x← t]). ut

Proposition 9. The transformation rules Bottom (B1, B2), Non-finite trees
(NFT1, NFT2, NFT3), Finite trees (FT), Decomposition (D1, D2), Clash
(C1, C2), Occur-check (O1, O2) and Tautology (T) are correct in E.

Proof. T is trivially correct. The correctness of D1 and D2 is straightforward
due to A1. C1 and C2 are correct due to A2. The correctness of O1 and O2 is
straightforward due to A3. B1 and B2 are correct due to A4. NFT1, NFT2,
NFT3 and FT are proved to be correct using symmetry, transitivity, D1 and
Proposition 1. ut

Proposition 10. Existential elimination (EE1, EE2, EE3), Existential intro-
duction (EI) and Universal elimination (UE) are correct in E.

Proof. Regarding EE1, we have to prove that

E |= [∃w (w == w ∧ ϕ) ↔ ϕ]∀.

One implication is trivial. For the reverse one, it suffices to show the existence
of a witness. We know that there exists at least one constant function symbol
a/0 ∈ FΣ . Thus, the term a is a witness. The proof for EE3 is almost identical.
In this case, we can use ⊥ as witness.

With respect to EE2, we have to prove that

E |= [∃w (w == t ∧ ϕ) ↔ (x == x ∧ ϕ)]∀.

The first implication is proved by Proposition 1 and D1. The reverse implication
follows from the existence of a witness (the term t itself).

The correctness of EI is straightforward due to rules R, EE2 and EE1.
UE is correct since it results from rules R and EE2 via negation. ut

Proposition 11. The transformation rule Split (S) is correct in E.

Proof. We have to prove that

E |= [¬∃w∃z (x == t[w] ∧ ϕ[w · z]) ↔ ¬∃w (x == t[w]) ∨ (6)
∃w(x == t[w] ∧ ¬∃z ϕ[w · z])]∀.

For this purpose, we start from the formula

¬∃w∃z (x == t[w] ∧ ϕ[w · z]) ∧ (¬∃v x == t[v] ∨ ∃v x == t[v])

which is trivially equivalent to ¬∃w∃z (x == t[w] ∧ ϕ[w · z]). By distribution,
the above formula is transformed into a disjunction of two conjuncts where the
first one

¬∃w∃z (x == t[w] ∧ ϕ[w · z]) ∧ ¬∃v x == t[v]

is equivalent to ¬∃w x == t[w] (that is, the first conjunct in the right-hand
subformula of (6)). From the second conjunct

¬∃w∃z (x == t[w] ∧ ϕ[w · z]) ∧ ∃v x == t[v]

and using the transformation rule R, we obtain the formula

∃v (¬∃w∃z (t[v] == t[w] ∧ ϕ[w · z]) ∧ x == t[v]).

By simplification, this formula is transformed into

∃v (x == t[v] ∧ ∀w∀z (¬v == w ∨ ¬ϕ[w · z]))

which is equivalent to

∃v (x == t[v] ∧ (¬v == v ∨ ∀z ¬ϕ[v · z]))

using the rule UE. By distribution, we obtain a disjunction of two formulas

∃v (x == t[v] ∧ ¬v == v) ∨ ∃v (x == t[v] ∧ ∀z ¬ϕ[v · z])

where ∃v (x == t[v] ∧ ¬v == v) is equivalent to false by the rule NFT2

and ∃v (x == t[v] ∧ ∀z ¬ϕ[v · z]) is equivalent to the second conjunct in the
right-hand subformula of (6). Thus, formula (6) holds. ut

Theorem 2. The transformation rules in Figure 2 are correct in E.

Proof. It directly follows from Propositions 8, 9, 10 and 11. ut

