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Abstract. We propose a locally nameless representation for Launch-
bury’s natural semantics for lazy evaluation. Names are reserved for free
variables, while bound variable names are replaced by indices. This avoids
the use of α-conversion and facilitates the identification of equivalent
values in reduction proofs. We use cofinite quantification to express the
semantic rules that introduce fresh names, but we prove that existential
rules are admissible too. Moreover, we prove that the choice of names
during the evaluation of a term is irrelevant as long as they are fresh
enough.

1 Introduction

In the usual representation of the lambda-calculus, i.e., with variable names
for free and bound variables, terms are identified up to α-conversion. This no-
tation is suitable for explaining new concepts and for giving examples, while
α-substitution together with Barendregt’s variable convention [2] are freely used
in informal reasoning. But the variable convention may lead to prove false (see
[8]), and α-substitution is hard to implement in an automatic proof assistant.
Therefore, other representations have been proposed to avoid names and α-
conversion. For instance, the de Bruijn notation [5], where variable names are
replaced by indices. However, this nameless notation is much less intuitive and
quite cumbersome to use, as small modifications of a term may imply multiple
shiftings of the indices. A compromise between the named representation and
the de Bruijn notation is the locally nameless representation as presented in [4].
In this case, bound variable names are replaced by indices, while free variables
keep their names. This mixed notation combines the advantages of both named
and nameless representations. On the one hand, α-conversion is no longer needed
and variable substitution is easily defined because there is no danger of name
capture. On the other hand, terms are still readable and easy to manipulate.

We use a locally nameless representation to express Launchbury’s natural
semantics for lazy evaluation [6]. Our final purpose is to implement this natural
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x ∈ Var
e ∈ Exp ::= λx.e | (e x) | x | let {xi = ei}ni=1 in e.

Fig. 1. Restricted named syntax of the extended λ-calculus

semantics in some proof assistant like Coq [3], and then to prove formally several
properties of the semantics. The reduction rule for local declarations implies the
introduction of fresh names. We use neither an existential nor a universal rule
for this case. Instead, we opt for a cofinite rule as introduced by Aydemir et
al. in [1]. Nevertheless, an introduction lemma is stated (and proved) which ex-
presses that an existential rule is admissible too. Our locally nameless semantics
is completed with a regularity lemma which ensures that every term and heap
involved in a reduction proof are well-formed, and with a renaming lemma which
indicates that the choice of names (free variables) is irrelevant as long as they are
fresh enough. We have experienced the advantages of using cofinite rules when
demonstrating these results.

In summary, the contributions of this paper are:

1. A locally nameless representation of the λ-calculus extended with recursive
local declarations;

2. A locally nameless version of the inductive rules of Launchbury’s natural
semantics for lazy evaluation;

3. A new version of cofinite rules where the variables quantified in the premises
do appear in the conclusion too; and

4. A formal proof of several properties of our reduction system like the regu-
larity, the introduction and the renaming lemmas.

The paper is structured as follows: In Section 2 we present the locally name-
less representation of the lambda calculus extended with recursive local decla-
rations. The locally nameless translation of the natural semantics for lazy eval-
uation given in [6] is described in Section 3, together with the regularity, the
introduction and the renaming lemmas. The proofs of these lemmas and other
auxiliary results are detailed in the Appendix. In Section 4 we draw conclusions
and outline our future work.

2 The locally nameless representation

The language described in [6] is a normalized lambda calculus extended with
recursive local declarations. We reproduce the restricted syntax in Figure 1.
Normalization is achieved in two steps. First an α-conversion is performed so
that all bound variables have distinct names. In a second phase, it is ensured
that arguments for applications are restricted to be variables. These static trans-
formations make more explicit the sharing of closures and, thus, simplify the
definition of the reduction rules.

We give the corresponding locally nameless representation by following the
methodology summarized in [4]:
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x ∈ Id i, j ∈ N
v ∈ Var ::= bvar i j | fvar x
t ∈ LNExp ::= v | abs t | app t v | let {ti}ni=1 in t

Fig. 2. Locally nameless syntax

1. Define the syntax of the extended λ-calculus in the locally nameless style.
2. Define the variable opening and variable closing operations.
3. Define the free variables and substitution functions, as well as the local

closure predicate.
4. State and prove the properties of the operations on terms that are needed

in the development to be carried out.

2.1 Locally nameless syntax

The locally nameless (restricted) syntax is shown in Figure 2. Var stands now
for the set of variables, where it is distinguished between bound variables and
free variables. The calculus includes two variable binders: λ-abstraction and let-
expression. Since let declarations are multibinders, bound variables are repre-
sented with two natural numbers: the first number indicates to which binder
of the term (either abstraction or let) the variable is bound, while the second
refers to the position of the variable inside the binder (in the case of an abstrac-
tion this second number should be 0). In the following, we will represent a list
like {ti}ni=1 as t, with length |t| = n.

Example 1. Let e ∈ Exp be the λ-expression given in the named representation

e ≡ λz.let {x1 = λy1.y1, x2 = λy2.y2} in (z x2).

The corresponding locally nameless term t ∈ LNExp is:

t ≡ abs (let {abs (bvar 0 0), abs (bvar 0 0)} in app (bvar 1 0) (bvar 0 1)).

Notice that x1 and x2 denote α-equivalent expressions in e. This is more clearly
seen in t, where both expressions are represented with syntactically equal terms.

ut
Application arguments are still restricted to variables, but the first phase

of the normalization (described at the beginning of the section) is no longer
needed.

2.2 Variable opening and variable closing

Variable opening and variable closing are the main operations to manipulate lo-
cally nameless terms. We extend the definitions given in [4] to the let-expression
defined in Figure 2.4

4 Multiple binders are defined in [4]. One corresponds to non recursive local declara-
tions, and the other to mutually recursive expressions. Both constructions are treated
as extensions, so that they are not completely developed.
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{k → x}(bvar i j) =

{
fvar (List.nth j x) if i = k ∧ j < |x|
bvar i j otherwise

{k → x}(fvar x) = fvar x
{k → x}(abs t) = abs ({k + 1→ x} t)
{k → x}(app t v) = app ({k → x} t) ({k → x} v)
{k → x}(let t in t) = let ({k + 1→ x} t) in ({k + 1→ x} t)

where {k → x} t = List.map ({k → x} ·) t.

Fig. 3. Variable opening

In order to be able to explore the body of a binder construction (abstraction
or let), one needs to replace the corresponding bound variables by fresh names.
In the case of an abstraction abs t the variable opening operation provides a
(fresh) name to replace in t the bound variables referring to the outermost ab-
straction. Analogously, the opening of a let-term let t in t provides a list of
distinct fresh names (as many as local declarations in t) to replace the bound
variables occurring in t and in the body t that refer to this particular declaration.

Variable opening is defined in terms of a recursive function {k → x}t (Fig-
ure 3), where the number k represents the nesting level of the binder of interest,
and x is a list of pairwise-distinct identifiers in Id . Since the level of the outer-
most binder is 0, variable opening is defined as:

tx = {0→ x}t.

Sometimes we are interested in applying the opening operation to a list of

terms: t
x

= List.map (·x) t.

The last definition and those in Figure 3 include some operations on lists.
We use an ML-like notation. For instance, List.nth j x represents the (j + 1)th

element of x,5 and List.map f t indicates that the function f is applied to every
term in the list t. In the rest of definitions we will use similar list operations.

Inversely to variable opening, there is an operation to transform free names
into bound variables. The variable closing of a term is represented by \xt, where
x is the list of names to be bound (recall that all names in x are different). The
definition of variable closing is based on a recursive function {k ← x}t (Figure 4),
where k indicates again the level of nesting of binders.Whenever a free variable
fvar x is encountered, x is looked up in x. If x occurs in position j, then the
free variable is replaced by the bound variable (bvar k j), otherwise it is left
unchanged.Variable closing is then defined as follows:

\xt = {0← x}t.

Variable closing of a list of terms is: \xt = List.map (\x·) t.

5 In order to better accommodate to bound variables indices, elements in a list are
numbered starting with 0.
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{k ← x}(bvar i j) = bvar i j

{k ← x}(fvar x) =

{
bvar k j if ∃j : 0 ≤ j < |x|.x = List.nth j x
fvar x otherwise

{k ← x}(abs t) = abs ({k + 1← x} t)
{k ← x}(app t v) = app ({k ← x} t) ({k ← x} v)
{k ← x}(let t in t) = let ({k + 1← x} t) in ({k + 1← x} t)

where {k ← x} t = List.map ({k ← x} ·) t.

Fig. 4. Variable closing

lc var
lc (fvar x)

lc abs
∀x /∈ L ⊆ Id lc t[x]

lc (abs t)

lc app
lc t lc v

lc (app t v)
lc let

∀x|t| /∈ L ⊆ Id lc [t : t]
x

lc (let t in t)

lc list
List.forall (lc ·) t

lc t

Fig. 5. Local closure

2.3 Local closure, free variables and substitution

The locally nameless syntax in Figure 2 allows to build terms that have no corre-
sponding expression in LNExp (Figure 1). For instance, the term abs (bvar 1 5)
is an improper syntactic object, since index 1 does not refer to a binder in
the term. The well-formed terms, i.e., those that correspond to expressions in
LNExp, are called locally closed.

To determine if a term is locally closed one should check that any bound
variable in the term has valid indices, i.e., that they refer to binders in the term.
However, this checking is not straightforward, and an easier method is to open
with fresh names every abstraction and let-expression in the term to be checked,
and prove that no bound variable is ever reached. This checking is implemented
with the local closure predicate lc t given in Figure 5.

Observe that cofinite quantification rules [1] are used for the binders, i.e.,
abstraction and let. Cofinite quantification is an elegant alternative to exist-
fresh conditions and provides stronger induction and inversion principles. Proofs
are simplified, because it is not required to define exactly the set of fresh names
(several examples of this are given in [4]). The rule lc-abs establishes that an
abstraction is locally closed if there exists a finite set of names L such that, for
any name x not in L, the term t[x] is locally closed. Similarly, the rule lc-let
indicates that a let-expression is locally closed if there exists a finite set of
names L such that, for any list of distinct names x not in L and of length |t|
(x|t| /∈ L), the opening of each term in the list of local declarations, t

x
, and of

the term affected by these declarations, tx, is locally closed. We use the notation
[t : t] to represent the list with head t and tail t. The empty list is represented as
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lck-bvar
i < k ∧ j < List.nth i n

lc at k n (bvar i j)
lck-app

lc at k n t lc at k n v

lc at k n (app t v)

lck-fvar
lc at k n (fvar x)

lck-let
lc at (k + 1) [|t| : n] [t : t]

lc at k n (let t in t)

lck-abs
lc at (k + 1) [1 : n] t

lc at k n (abs t)
lck-list

List.forall (lc at k n ·) t
lc at k n t

Fig. 6. Closed at level k

[ ], a unitary list as [t], and [t : t] stands for t++[t], where ++ is the concatenation
of lists.

Coming back to the first approach to local closure, i.e., checking that indices
in bound variables are valid, a new predicate is defined: t is closed at level k,
written lc at k n t (Figure 6), where k indicates the current depth, that is, how
many binders have been passed by. As binders can be either abstractions or local
declarations, we need to keep the size of each binder (1 in case of an abstraction,
n for a let-expression with n local declarations). These sizes are collected in the
list n, thus |n| should be at least k. A bound variable bvar i j is closed at level
k if i is smaller than k and j is smaller than List.nth i n. The list n is new
with respect to [4] because there the predicate lc at is not defined for multiple
binders.

We can define an order between lists of natural numbers as follows:

[ ] ≥ [ ] m ≥ n ∧ m ≥ n⇒ [m : m] ≥ [n : n]

If a term t is locally closed at level k for a given list of numbers n, then it is
also locally closed at level k for any list of numbers greater than n.

Lemma 1.
lc at m from n lc at k n t⇒ ∀m ≥ n . lc at k m t

The two approaches are equivalent, so that it can be proved that a term is
locally closed if and only if it is closed at level 0.

Lemma 2.
lc iif lc at lc t⇔ lc at 0 [ ] t

Computing the free variables of a term t is very easy in the locally nameless
representation, since bound and free variables are syntactically different. The set
of free variables of t ∈ LNExp is denoted as fv(t), and it is defined in Figure 7.

A name x is said to be fresh for a term t, written fresh x in t, if x does not
belong to the set of free variables of t:

x /∈ fv(t)

fresh x in t
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fv(bvar i j) = ∅ fv(fvar x) = {x}
fv(app t v) = fv(t) ∪ fv(v) fv(abs t) = fv(t)
fv(let t in t) = fv(t) ∪ fv(t)

where fv(t) = List.foldright (· ∪ ·) ∅ (List.map fv t).

Fig. 7. Free variables

(bvar i j)[z/y] = bvar i j (fvar x)[z/y] =

{
fvar z if x = y
fvar x if x 6= y

(abs t)[z/y] = abs t[z/y] (app t v)[z/y] = app t[z/y] v[z/y]
(let t in t)[z/y] = let t[z/y] in t[z/y]

where t[z/y] = List.map ([z/y]·) t.

Fig. 8. Substitution

This definition can be easily extended to a list of distinct names x:

x /∈ fv(t)

fresh x in t

A term t is closed if it has no free variables at all:

fv(t) = ∅
closed t

Substitution replaces a variable name by another name in a term. So that for
t ∈ LNExp and z, y ∈ Id , t[z/y] is the term where z substitutes any occurrence
of y in t (see Figure 8).

Under some conditions variable closing and variable opening are inverse op-
erations. More precisely, opening a term with fresh names and closing it with the
same names, produces the original term. Symmetrically, closing a locally closed
term t and then opening it with the same names gives back t.

Lemma 3.
close open var fresh x in t⇒ \x(tx) = t
open close var lc t⇒ (\xt)x = t

3 Natural semantics for lazy λ-calculus

The natural semantics defined by Launchbury [6] follows a lazy strategy. Judge-
ments are of the form Γ : e ⇓ ∆ : w, that is, the expression e ∈ Exp in the
context of the heap Γ reduces to the value w in the context of the (modified)
heap ∆. Values (w ∈ Val) are expressions in weak-head-normal-form (whnf ).
Heaps are partial functions from variables into expressions. Each pair (variable,
expression) is called a binding, and it is represented by x 7→ e. During evaluation,
new bindings may be added to the heap, and bindings may be updated to their
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Lam Γ : λx.e ⇓ Γ : λx.e App
Γ : e ⇓ Θ : λy.e′ Θ : e′[x/y] ⇓ ∆ : w

Γ : (e x) ⇓ ∆ : w

Var
Γ : e ⇓ ∆ : w

(Γ, x 7→ e) : x ⇓ (∆,x 7→ w) : ŵ
Let

(Γ, {xi 7→ ei}ni=1) : e ⇓ ∆ : w

Γ : let {xi = ei}ni=1 in e ⇓ ∆ : w

Fig. 9. Natural semantics

corresponding computed values. The rules of this natural semantics are shown
in Figure 9. The normalization of the λ-calculus, that has been mentioned in
Section 2, simplifies the definition of the operational rules, although a renaming
is still needed (ŵ in Var) to avoid name clashing. This renaming is justified by
the Barendregt’s variable convention [2].

3.1 Locally nameless heaps

Before translating the semantic rules in Figure 9 to the locally nameless repre-
sentation defined in Section 2, we have to establish how bindings and heaps are
represented in this notation.

Recall that bindings associate expressions to free variables, therefore bindings
are now pairs (fvar x, t) with x ∈ Id and t ∈ LNExp. To simplify, we will just
write x 7→ t. In the following, we will represent a heap {xi 7→ ti}ni=1 as (x 7→ t),
with |x| = |t| = n. The set of the locally-nameless-heaps is denoted as LNHeap.

The domain of a heap Γ , written dom(Γ ), collects the set of names that are
bound in the heap.

dom(∅) = ∅ dom(Γ, x 7→ t) = dom(Γ ) ∪ {x}

In a well-formed heap names are defined at most once and terms are locally
closed. The predicate ok expresses that a heap is well-formed:

ok-empty
ok ∅

ok-cons
ok Γ x /∈ dom(Γ ) lc t

ok (Γ, x 7→ t)

A similar (but related with normalization) predicate distinctly named is defined
in [6] for heap/term pairs.

The function names returns the set of names that appear in a heap, i.e., the
names occurring in the domain or in the right side terms:

names(∅) = ∅ names(Γ, x 7→ t) = names(Γ ) ∪ {x} ∪ fv(t)

This definition can be extended to the context of a heap/term pair:

names(Γ : t) = names(Γ ) ∪ fv(t)

We use it to define the freshness predicate of a list of names in a heap/term
pair:
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LNLam
{ok Γ} {lc (abs t)}
Γ : abs t ⇓ Γ : abs t

LNVar
Γ : t ⇓ ∆ : w {x /∈ dom(Γ ) ∪ dom(∆)}
(Γ, x 7→ t) : (fvar x) ⇓ (∆,x 7→ w) : w

LNApp
Γ : t ⇓ Θ : abs u Θ : u[x] ⇓ ∆ : w {x /∈ dom(Γ )⇒ x /∈ dom(∆)}

Γ : app t (fvar x) ⇓ ∆ : w

LNLet
∀x|t| /∈ L ⊆ Id (Γ, x 7→ t

x
) : tx ⇓ (x++z 7→ ux) : wx {y|t| /∈ L ⊆ Id}

Γ : let t in t ⇓ (y ++z 7→ uy) : wy

Fig. 10. Locally nameless natural semantics

x /∈ names(Γ : t)

fresh x in (Γ : t)

Substitution of variable names is extended to heaps as follows:

∅[z/y] = ∅ (Γ, x 7→ t)[z/y] = (Γ [z/y], x[z/y] 7→ t[z/y])

where x[z/y] =

{
z if x = y
x otherwise

The following property is verified:

Lemma 4.
ok subs ok ok Γ ∧ y /∈ dom(Γ )⇒ ok Γ [y/x]

3.2 Locally nameless semantics

Once the locally nameless syntax and the corresponding operations, functions
and predicates have been defined, three steps are sufficient to translate an in-
ductive definition on λ-terms from the named representation into the locally
nameless notation (as it is explained in [4]):

1. Replace the named binders, i.e., abstractions and let-constructions, with
nameless binders by opening the bodies.

2. Cofinitely quantify the names introduced for variable opening.
3. Add premises to inductive rules in order to ensure that inductive judgements

are restricted to locally closed terms.

We apply these steps to the inductive rules for the lazy natural semantics
given in Figure 9. These rules produce judgements involving λ-terms as well as
heaps. Hence, we also add premises that ensure that inductive judgements are
restricted to well-formed heaps. The rules using the locally nameless represen-
tation are shown in Figure 10. For clarity, in the rules we put in braces the
side-conditions to distinguish them better from the judgements.
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The main difference with the rules in Figure 9 is the rule LNLet. To evaluate
let t in t the local terms t have to be introduced in the heap, so that the body
t is evaluated in this new context. To this purpose fresh names x are needed to
open the local terms and the body. The evaluation of tx produces a final heap
and a value. Both are dependent on the names chosen for the local variables. The
domain of the final heap consists of the local names x and the rest of names, say
z. The rule LNLet is cofinite quantified. As it is explained in [4], the advantage
of the cofinite rules over existential and universal ones is that the freshness side-
conditions are not explicit. The freshness condition for x is hidden in the finite
set L, which includes the names that should be avoided during the reduction.
The novelty of our cofinite rule, compared with the ones appearing in [1] and [4]
(that are similar to the cofinite rules for the predicate lc in Figure 5), is that
the names introduced in the (infinite) premises do appear in the conclusion too.
Therefore, in the conclusion of the rule LNLet we can replace the names x by
any list y not in L.

The problem with explicit freshness conditions is that they are associated
just to rule instances, while they should apply to the whole reduction proof.
Take for instance the rule LNVar. In the premise the binding x 7→ t does no
longer belong to the heap. Therefore, a valid reduction for this premise may
chose x as fresh. We avoid this situation by requiring that x is undefined in the
final heap too.6 By contrast to the rule Var in Figure 9, no renaming of the
final value, that is w, is needed.

The side-condition of rule LNApp deserves an explanation too. Let us sup-
pose that x is undefined in the initial heap Γ . We must avoid that x is chosen
as a fresh name during the evaluation of t. For this reason we require that x is
defined in the final heap ∆ only if x was already defined in Γ . Notice how the
body of the abstraction, that is u, is open with the name x. This is equivalent
to the substitution of x for y in the body of the abstraction λy.e′ (see rule App
in Figure 9).

A regularity lemma ensures that the judgements produced by this reduction
system involve only well-formed heaps and locally closed terms.

Lemma 5.
regularity Γ : t ⇓ ∆ : w ⇒ ok Γ ∧ lc t ∧ ok ∆ ∧ lc w.

Similarly, Theorem 1 in [6] ensures that the property of being distinctly named
is preserved by the rules in Figure 9.

The next lemma states that names defined in a context heap remain defined
after the evaluation of any term in that context.

Lemma 6.
def not lost Γ : t ⇓ ∆ : w ⇒ dom(Γ ) ⊆ dom(∆).

6 An alternative is to decorate judgements with a set collecting the names that have
been taken out of the heap during a reduction proof, and starting with the empty
set. This approach has been adopted by Sestoft in [7].
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Moreover, fresh names are only introduced by the rule LNLet and, conse-
quently, they are bound in the final heap/value pair. Therefore, any undefined
free variable appearing in the final heap/value pair must occur in the initial
heap/term pair too.

Lemma 7.
add vars Γ : t ⇓ ∆ : w

⇒ (x ∈ names(∆ : w)⇒ (x ∈ dom(∆) ∨ x ∈ names(Γ : t))).

A renaming lemma ensures that the evaluation of a term is independent of
the fresh names chosen in the reduction process. Moreover, any name in the
context can be replaced by a fresh one without changing the meaning of the
terms evaluated in that context. In fact, reduction proofs for heap/term pairs
are unique up to α-conversion of the names defined in the context heap.

Lemma 8.
renaming Γ : t ⇓ ∆ : w ∧ fresh y in (Γ : t) ∧ fresh y in (∆ : w)

⇒ Γ [y/x] : t[y/x] ⇓ ∆[y/x] : w[y/x].

In addition, the renaming lemma permits to prove an introduction lemma
for the cofinite rule LNLet which establishes that the corresponding existential
rule is admissible too.

Lemma 9.
let intro (Γ, x 7→ t

x
) : tx ⇓ (x++z 7→ ux) : wx ∧ fresh x in (Γ : let t in t)

⇒ Γ : let t in t ⇓ (x++z 7→ ux) : wx.

This result, together with the renaming lemma, justifies that our rule LNLet
is equivalent to Launchbury’s rule Let used with normalized terms.

4 Conclusions and future work

In the present work we have used a locally nameless representation not only for
the pure λ-calculus [4] but also for its extension with mutually recursive local
declarations. This notation avoids name clashing between bound and free vari-
ables. Afterwards, we have used this representation for redefining Launchbury’s
natural semantics for lazy evaluation [6]. To this purpose we have adapted the
definition of context heaps to the locally nameless notation. A heap may be seen
as a multiple binder. Actually, the names defined (bound) in a heap can be re-
placed by other names, provided that terms keep their meaning in the context
represented by the heap. Our renaming lemma ensures that whenever a heap is
renamed with fresh names, reduction proofs are preserved.

Launchbury assumes Barendregt’s variable convention [2] in [6] when defining
his operational semantics only for normalized λ-terms. In order to the avoid this
problematic [8] variable convention, we have used cofinite quantification in our
locally nameless reduction rules. Freshness conditions are usually considered in
each rule individually. Nevertheless, this technique produces name clashing when
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considering whole reduction proofs. A solution might be to decorate each rule
with the set of forbidden names and indicate how to modify this set during
the reduction process. However, this could be too restrictive in many occasions.
Moreover, existential rules are not easy to deal with because each reduction is
obtained just for one specific list of names. If any of the names in this list causes a
name clashing with other reduction proofs, then it is cumbersome to demonstrate
that an alternative reduction for a fresh list does exist. Cofinite quantification
has allowed us to solve this problem because in a single step reductions are
guaranteed for an infinite number of lists of names. Moreover, our introduction
lemma guarantees that a more conventional exists-fresh rule is correct in our
reduction system too.

The cofinite quantification that we have used in our semantic rules is more
complex than those in [1] and [4]. Our cofinite rule LNLet in Figure 10 intro-
duces quantified variables in the conclusion as well, as the latter depends on the
chosen names.

Our future tasks include the implementation in the proof assistant Coq [3]
of the natural semantics redefined in this paper. The final aim is to prove auto-
matically the equivalence of the natural semantics with the alternative version
given also in [6]. This alternative version differs from the original one in the in-
troduction of indirections during β-reduction and the elimination of updates. At
present we are working on the definition (using the locally nameless representa-
tion) of two intermediate semantics, one introducing indirections and the other
without updates. Then, we will establish equivalence relations between heaps
obtained by each semantics, which allow us to prove the equivalence of the orig-
inal natural semantics and the alternative semantics through the intermediate
semantics.
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6 Appendix

6.1 Proof of Lemma 1: lc at m from n

Lemma 1 :
lc at m from n lc at k n t⇒ ∀m ≥ n . lc at k m t

Proof. The proof is done by structural induction on t.

– t ≡ bvar i j.
lc at k n (bvar i j), then i < k ∧ j < List.nth i n.
If m ≥ n, then List.nth i m ≥ List.nth i n.
Consequently i < k ∧ j < List.nth i m.
Applying rule lck-bvar, lc at k m (bvar i j).

– t ≡ fvar x.
Trivial.

– t ≡ abs t′.
lc at k n (abs t′), then lc at (k + 1) [1 : n] t′.
Since m ≥ n, then [1 : m] ≥ [1 : n].
By induction hypothesis, lc at (k + 1) [1 : m] t′.
Applying rule lck-abs, lc at k m (abs t).

– t ≡ app t′ v.
lc at k n (app t′ v), then lc at k n t′ ∧ lc at k n v.
Since m ≥ n,
by induction hypothesis, lc at k m t′ ∧ lc at k m v.
Applying rule lck-app, lc at k m (app t′ v).

– t ≡ let t in t′.
lc at k n (let t in t′), then lc at (k+1) [|t| : n] t∧lc at (k+1) [|t| : n] t′.
Since m ≥ n, then [|t| : m] ≥ [|t| : n].
By induction hypothesis, lc at (k + 1) [|t| : m] t ∧ lc at (k + 1) [|t| : m] t′.
Applying rule lck-let, lc at k m (let t in t′).

ut
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6.2 Proof of Lemma 2: lc iif lc at

To prove Lemma 2, we have to prove two auxiliary results: Lemmas 10 and 11.
If a term t opened with names x at level k is locally closed at level k with n,

then the term t is also locally closed at level k + 1 with [n : |x|].

Lemma 10.
lc at k+1 from k k= |n| ∧ lc at k n ({k→x}t)⇒ lc at (k + 1) [n : |x|] t

Proof. The proof is done by induction on the structure of t.

– t ≡ bvar i j.
lc at k n ({k → x}(bvar i j)).
• i = k ∧ j < |x|

By hypothesis, lc at k n (fvar (List.nth j x))
Thus,

i = k < k + 1 ∧ j < |x| k=|n|
= List.nth k [n : |x|] = List.nth i [n : |x|].

• otherwise
By hypothesis, lc at k n (bvar i j), then i < k ∧ j < List.nth i n.
Thus, i < k < k + 1 ∧ j < List.nth i n = List.nth i [n : |x|].

In both cases, by rule lck-bvar, lc at (k + 1) [n : |x|] (bvar i j).

– t ≡ fvar x.
Trivial.

– t ≡ abs t′.
Since lc at k n ({k → x}(abs t′)), lc at k n (abs ({k + 1→ x}t′)).
Thus, lc at (k + 1) [1 : n] ({k + 1→ x}t′).
By induction hypothesis, lc at (k + 2) [1 : n : |x|] t′.
Applying rule lck-abs, lc at (k + 1) [n : |x|] (abs t′).

– t ≡ app t′ v.
Since lc at k n ({k → x}(app t′ v)),
lc at k n (app ({k → x}t′) ({k → x}v)).
Thus, lc at k n ({k → x}t′) ∧ lc at k n ({k → x}v).
By induction hypothesis, lc at (k + 1) [n : |x|] t′ ∧ lc at (k + 1) [n : |x|] v.
Applying rule lck-app, lc at (k + 1) [n : |x|] (app t′ v).

– t ≡ let t in t′.
Since lc at k n ({k → x}(let t in t′)),
lc at k n (let ({k + 1→ x}t) in ({k + 1→ x}t′)).
Thus, lc at (k + 1) [|t| : n] ({k + 1→ x}t)
and lc at (k + 1) [|t| : n] ({k + 1→ x}t′).
By induction hypothesis,
lc at (k + 2) [|t| : n : |x|] t ∧ lc at (k + 2) [|t| : n : |x|] t′.
Applying rule lck-let, lc at (k + 1) [n : |x|] (let t in t′).

ut
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Next lemma indicates that if a term is locally closed at level k+1 for a given
list of natural numbers [n : n], then the term open with distinct fresh names x
(such that x ≥ n) is closed at level k for the list n.

Lemma 11.
lc at k from k+1 k = |n| ∧ lc at (k + 1) [n : n] t

⇒ ∀x ⊆ Id , |x| ≥ n, lc at k n ({k → x}t)

Proof. By structural induction on t.

– t ≡ bvar i j.
Since lc at (k + 1) [n : n] (bvar i j), i < k + 1 ∧ j < List.nth i [n : n]

• i = k ∧ j < List.nth k [n : n]
k=|n|

= n
Let x ⊆ Id such that |x| ≥ n.
Since {k → x}(bvar k j) = fvar (List.nth j x),
applying rule lck-fvar, lc at k n ({k → x}(bvar i j)).

• i < k ∧ j < List.nth i [n : n] = List.nth i n
By rule lck-bvar, lc at k n ({k → x}(bvar i j)).

– t ≡ fvar x.
Trivial.

– t ≡ abs t′.
Since lc at (k + 1) [n : n] (abs t′), lc at (k + 2) [1 : n : n] t′.
By induction hypothesis,
∀x ⊆ Id , |x| ≥ n, lc at (k + 1) [1 : n] ({k + 1→ x}t′).
Applying rule lck-abs,
∀x ⊆ Id , |x| ≥ n, lc at k n (abs ({k + 1→ x}t′)).
Thus, ∀x ⊆ Id , |x| ≥ n, lc at k n ({k → x}(abs t′)).

– t ≡ app t′ v.
Since lc at (k + 1) [n : n] (app t′ v),
lc at (k + 1) [n : n] t′ and lc at (k + 1) [n : n] v.
By induction hypothesis,
∀x ⊆ Id , |x| ≥ n, (lc at k n ({k → x}t′) ∧ lc at k n ({k → x}v)).
Applying rule lck-app,
∀x ⊆ Id , |x| ≥ n, lc at k n (app ({k → x}t′) ({k → x}v)).
Thus, ∀x ⊆ Id , |x| ≥ n, lc at k n ({k → x}(app t′ v)).

– t ≡ let t in t′.
Since lc at (k + 1) [n : n] (let t in t′),
lc at (k + 2) [|t| : n : n] t and lc at (k + 2) [|t| : n : n] t′.
By induction hypothesis, ∀x ⊆ Id , |x| ≥ n,
lc at (k+ 1) [|t| : n] ({k+ 1→ x}t)∧ lc at (k+ 1) [|t| : n] ({k+ 1→ x}t′).
Applying rule lck-let,
∀x ⊆ Id , |x| ≥ n, lc at k n (let ({k + 1→ x}t) in ({k + 1→ x}t′)).
Thus, ∀x ⊆ Id , |x| ≥ n, lc at k n ({k → x}(let t in t′)).

ut
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Now we are ready to prove that a term is locally closed if and only if is closed
at level 0.

Lemma 2 :
lc iif lc at lc t⇔ lc at 0 [ ] t

Proof.
⇒) By structural induction on t:

– t ≡ bvar i j.
Trivial.

– t ≡ fvar x.
Trivial.

– t ≡ abs t′

lc (abs t′), then ∀x /∈ L ⊆ Id .lc t′
[x]

.

By induction hypothesis, ∀x /∈ L ⊆ Id .lc at 0 [ ] t′
[x]

.
Thus, ∀x /∈ L ⊆ Id .lc at 0 [ ] ({0→ x}t′).
By lc at k+1 from k, ∀x /∈ L ⊆ Id .lc at 1 [1] t′.
By lck-abs, lc at 0 [ ] (abs t′).

– t ≡ app t′ v.
lc (app t′ v), then lc t′ and lc v.
By induction hypothesis, lc at 0 [ ] t′ and lc at 0 [ ] v.
By lck-app, lc at 0 [ ] (app t′ v).

– t ≡ let t in t′.
lc (let t in t′), then ∀x|t| /∈ L ⊆ Id .lc [t : t]x.

By induction hypothesis, ∀x|t| /∈ L ⊆ Id .lc at 0 [ ] [t : t]x.

Thus, ∀x|t| /∈ L ⊆ Id .lc at 0 [ ] {0→ x}[t : t].

By lc at k+1 from k, ∀x|t| /∈ L ⊆ Id .lc at 1 [|x|] [t : t].
By lck-let, lc at 0 [ ] (let t in t′).

⇐) By structural induction on t:

– t ≡ bvar i j.
Trivial, since this case is not possible.
lc at 0 [ ] (bvar i j) ⇒ i < 0 ∧ j < List.nth i [ ], the empty list has no
elements.

– t ≡ fvar x.
Trivial.
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– t ≡ abs t′.
Since lc at 0 [ ] (abs t′), lc at 1 [1] t′.
By lc at k from k+1, ∀x ⊆ Id , |x| ≥ 1.lc at 0 [ ] ({0→ x}t′).
Thus, ∀x /∈ ∅ ⊆ Id .lc at 0 [ ] t′

[x]
.

By induction hypothesis, ∀x /∈ ∅ ⊆ Id .lc t′
[x]

.
By lc-abs, lc (abs t′).

– t ≡ app t′ v.
Since lc at 0 [ ] (app t′ v), lc at 0 [ ] t′ ∧ lc at 0 [ ] v.
By induction hypothesis, lc t′ ∧ lc v.
By lc-app, lc (app t′ v).

– t ≡ let t in t′.
Since lc at 0 [ ] (let t in t′), lc at 1 [|t|] t ∧ lc at 1 [|t|] t′.
By lc at k from k+1, ∀x ⊆ Id , |x| ≥ |t|
(lc at 0 [ ] ({0→ x}t) ∧ lc at 0 [ ] ({0→ x}t′)).
Thus, ∀x|t| /∈ ∅ ⊆ Id .(lc at 0 [ ] t

x ∧ lc at 0 [ ] t′
x
).

By induction hypothesis, ∀x|t| /∈ ∅ ⊆ Id .(lc t
x ∧ lc t′x).

By lc-let, lc (let t in t′).

ut

6.3 Proof of Lemma 3: close open var and open close var

Lemma 3 states that variable opening and variable closing are inverse functions
under some side conditions. Its proof requires another two auxiliary lemmas.
Lemma 12 expresses that opening a term at level k and then closing the result
at the same level with the same names produces the original term whenever the
chosen names to develop the opening and closing operations are fresh in the
term.

Lemma 12.
close open var k fresh x in t⇒ {k ← x}({k → x}t) = t

Proof. By structural induction on t:

– t ≡ bvar i j.

{k ← x}({k → x}(bvar i j))

=

{
{k ← x}(fvar (List.nth j x)) if i = k ∧ j < |x|
{k ← x}(bvar i j) otherwise

= bvar i j.

– t ≡ fvar x.
If fresh x in (fvar x), then x /∈ x.
Thus, {k ← x}({k → x}(bvar i j)) = {k ← x}(fvar x) = fvar x.
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– t ≡ abs t′.
If fresh x in (abs t′), then fresh x in t′. Thus,

{k ← x}({k → x}(abs t′)) = {k ← x}(abs ({k + 1→ x}t′))
= abs ({k + 1← x}({k + 1→ x}t′))

I.H. = abs t′.

– t ≡ app t′ v.
If fresh x in (app t′ v), then fresh x in t′ and fresh x in v. Thus,

{k ← x}({k → x}(app t′ v)) = {k ← x}(app ({k → x}t′) ({k → x}v))
= app ({k ← x}({k → x}t′)) ({k ← x}({k → x}v))

I.H. = app t′ v.

– t ≡ let t in t′.
If fresh x in (let t in t′), then fresh x in t and fresh x in t′. Thus,

{k ← x}({k → x}(let t in t′))
={k ← x}(let ({k + 1→ x}t) in ({k + 1→ x}t′))
=let ({k + 1← x}({k + 1→ x}t)) in ({k + 1← x}({k + 1→ x}t′))

I.H. =let t in t′.
ut

The second result (Lemma 13) establishes that closing a term at level k and
then opening the result with the same names at the same level gives back the
original term, when the term is closed at level k.

Lemma 13.
open close var k lc at k n t⇒ {k → x}({k ← x}t) = t

Proof. By structural induction on t:

– t ≡ bvar i j.
If lc at k n (bvar i j), then i < k and j < List.nth i n.
Thus, {k → x}({k ← x}(bvar i j)) = {k → x}(bvar i j) = bvar i j.

– t ≡ fvar x.

{k → x}({k ← x}(fvar x))

=

{
{k → x}(bvar k j) if ∃j : 0 ≤ j < |x|.x = List.nth j x
{k → x}(fvar x) otherwise

=

{
fvar (List.nth j x) if ∃j : 0 ≤ j < |x|.x = List.nth j x
fvar x otherwise

= fvar x.
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– t ≡ abs t′.
If lc at k n (abs t′), then lc at (k + 1) [1 : n] t′. Thus,

{k → x}({k ← x}(abs t′)) = {k → x}(abs ({k + 1← x}t′))
= abs ({k + 1→ x}({k + 1← x}t′))

I.H. = abs t′

– t ≡ app t′ v.
If lc at k n (app t′ v), then lc at k n t′ and lc at k n v. Thus,

{k → x}({k ← x}(app t′ v)) = {k → x}(app ({k ← x}t′) ({k ← x}v))
= app ({k → x}({k ← x}t′)) ({k → x}({k ← x}v))

I.H. = app t′ v

– t ≡ let t in t′.
If lc at k n (let t in t′), then
lc at (k + 1) [|t| : n] t and lc at (k + 1) [|t| : n] t′. Thus,

{k → x}({k ← x}(let t in t′))
= {k → x}(let ({k + 1← x}t) in ({k + 1← x}t′))
= let ({k + 1→ x}({k + 1← x}t)) in ({k + 1→ x}({k + 1← x}t′))

I.H. = let t in t′.
ut

Now the proof of Lemma 3 is straightforward.

Lemma 3
close open var fresh x in t⇒ \x(tx) = t
open close var lc t⇒ (\xt)x = t

Proof.

– close open var is a corollary of Lemma 12 (take k = 0).
– open close var is a corollary of Lemma 13 (take k = 0).

ut

6.4 Proof of Lemma 4: ok subs ok

Lemmas 14 and 15 are needed to prove Lemma 4. Every variable in the domain
of a heap where variable x has been substituted by y is either in the domain of
the original heap, or coincides with y.

Lemma 14.
dom subs union dom(Γ [y/x]) ⊆ dom(Γ ) ∪ {y}

Proof. By induction on the size of Γ :

– Γ = ∅. Trivial.
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– Γ = (∆, z 7→ t).
dom(Γ [y/x]) = dom((∆[y/x], z[y/x] 7→ t[y/x])) = dom(∆[y/x]) ∪ {z[y/x]}

IH
⊆ dom(∆) ∪ {y} ∪ {z[y/x]}

• z = x.
dom(Γ [y/x]) ⊆ dom(∆) ∪ {y} ∪ {y} ⊆ dom(∆) ∪ {y} ∪ {z} = dom(Γ ) ∪ {y}

• z 6= x.
dom(Γ [y/x]) ⊆ dom(∆) ∪ {y} ∪ {z} = dom(Γ ) ∪ {y}

ut

Next lemma establishes that substitution preserves local closure

Lemma 15.
lc subs lc lc t⇒ lc t[y/x]

Proof. By structural induction on t:

– t ≡ bvar i j.
Trivial.

– t ≡ fvar x.
Trivial.

– t ≡ abs t′.
lc (abs t′)⇒ ∀z /∈ L ⊆ Id . lc t′

[z]
.

Let L′ = L ∪ {x} ⇒ ∀z /∈ L′ ⊆ Id . lc t′
[z]

.

By induction hypothesis, ∀z /∈ L′ ⊆ Id . lc (t′
[z[y/x]]

).
Since z 6= x, ∀z /∈ L′ ⊆ Id . lc (t′[y/x])[z].
By lc-abs, lc (abs (t′[y/x])).
Thus, lc (abs t′)[y/x].

– t ≡ app t′ v.
lc (app t′ v)⇒ lc t′ ∧ lc v.
By induction hypothesis, lc t′[y/x] ∧ lc v[y/x].
By lc-app, lc app (t′[y/x]) (v[y/x]).
Thus, lc (app t′ v)[y/x].

– t ≡ let t in t′.
lc let t in t′ ⇒ ∀z|t| /∈ L ⊆ Id . lc [t : t]z.

Let L′ = L ∪ {x} ⇒ ∀z|t| /∈ L′ ⊆ Id . lc [t : t]z.

By induction hypothesis, ∀z|t| /∈ L′ ⊆ Id . lc ([t : t]z[y/x]).

Since x /∈ z, ∀z|t| /∈ L′ ⊆ Id . lc ([t : t][y/x]z).
By lc-let, lc (let (t[y/x]) in (t′[y/x])).
Thus, lc (let t in t′)[y/x].

ut
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Now we can prove Lemma 4:

Lemma 4
ok subs ok ok Γ ∧ y /∈ dom(Γ )⇒ ok Γ [y/x]

Proof. By rule induction on the size of Γ :

– Γ = ∅. Trivial.

– Γ = (∆, z 7→ t).
ok (∆, z 7→ t)⇒ ok ∆ ∧ z /∈ dom(∆) ∧ lc t.
Let y /∈ dom(∆, z 7→ t) = dom(∆) ∪ {z} ⇒ y /∈ dom(∆) ∧ y 6= z.
By induction hypothesis, ok ∆[y/x].

• Case z 6= x:

dom(∆[y/x])
L14
⊆ dom(∆) ∪ {y}.

Since z /∈ dom(∆) and z 6= y, then z /∈ dom(∆[y/x]).

• Case z = x:
z = x⇒ x /∈ dom(∆)⇒ dom(∆[y/x]) = dom(∆).
Thus, y /∈ dom(∆[y/x]).

By Lemma 15, lc t[y/x].
Thus, ok (∆, z 7→ t)[y/x], i.e., ok Γ [y/x].

ut

6.5 Proof of Lemma 5: regularity

Lemma 5
regularity Γ : t ⇓ ∆ : w ⇒ ok Γ ∧ lc t ∧ ok ∆ ∧ lc w.

Proof. By rule induction:

– LNLam.
Trivial.

– LNVar.
By induction hypothesis, ok Γ ∧ lc t ∧ ok ∆ ∧ lc w.
Since x /∈ dom(Γ ), x /∈ dom(∆),
then ok (Γ, x 7→ t) and ok (∆,x 7→ w) and lc (fvar x) by definition.

– LNApp.
By induction hypothesis, ok Γ ∧ lc t ∧ ok Θ ∧ lc (abs u).
By induction hypothesis, ok Θ ∧ lc u[x] ∧ ok ∆ ∧ lc w.
Since lc t and lc (fvar x), then lc (app t (fvar x)).
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– LNLet.
By induction hypothesis,

∀x|t| /∈ L.ok (Γ, x 7→ t
x
) ∧ lc tx ∧ ok (x++z 7→ ux) ∧ lc wx.

Particularly for y|t| /∈ L.ok (y ++z 7→ uy) ∧ lc wy.

Since ∀x|t| /∈ L.ok (Γ, x 7→ t
x
), then ok Γ ∧ ∀x|t| /∈ L.(x /∈ dom(Γ ) ∧ lc tx).

Since ∀x|t| /∈ L.(lc tx ∧ lc tx), then lc (let t in t).
ut

6.6 Proofs of Lemmas 6 and 7: def not lost and add vars

Lemma 6
def not lost Γ : t ⇓ ∆ : w ⇒ dom(Γ ) ⊆ dom(∆).

Proof. By rule induction:

– LNLam.
Trivial.

– LNVar.
By induction hypothesis,
dom(Γ ) ⊆ dom(∆)⇒ dom(Γ, x 7→ t) ⊆ dom(∆,x 7→ w).

– LNApp.
By induction hypothesis, dom(Γ ) ⊆ dom(Θ) and dom(Θ) ⊆ dom(∆).
By transitivity, dom(Γ ) ⊆ dom(∆).

– LNLet.
By induction hypothesis,

∀x|t| /∈ L ⊆ Id . dom(Γ, x 7→ t
x
) ⊆ dom(x++z 7→ ux).

Particularly for y|t| /∈ L ⊆ Id ,

dom(Γ, y 7→ t
y
) = dom(Γ ) ∪ {y} ⊆ dom(y ++z 7→ uy).

Thus, dom(Γ ) ⊆ dom(y ++z 7→ uy).

ut

Lemma 7
add vars Γ : t ⇓ ∆ : w

⇒ (x ∈ names(∆ : w)⇒ (x ∈ dom(∆) ∨ x ∈ names(Γ : t))).

Proof. It is equivalent to prove

Γ : t ⇓ ∆ : w ⇒ names(∆ : w) ⊆ dom(∆) ∪ names(Γ : t).

By rule induction:

– LNLam.
Trivial.



23

– LNVar.
names((∆,x 7→ w) : w) = names(∆ : w) ∪ {x}

IH
⊆ dom(∆) ∪ names(Γ : t) ∪ {x}
= dom(∆) ∪ names(Γ ) ∪ fv(t) ∪ {x}
= dom(∆,x 7→ w) ∪ names(Γ, x 7→ t) ∪ fv(fvar x)
= dom(∆,x 7→ w) ∪ names((Γ, x 7→ t) : fvar x).

– LNApp.

names(∆ : w)
IH
⊆ dom(∆) ∪ names(Θ : u[x])
⊆ dom(∆) ∪ names(Θ) ∪ fv(u) ∪ {x}
= dom(∆) ∪ names(Θ) ∪ fv(abs u) ∪ fv(fvar x)
= dom(∆) ∪ names(Θ : abs u) ∪ fv(fvar x)
IH
⊆ dom(∆) ∪ dom(Θ) ∪ names(Γ : t) ∪ fv(fvar x)
L6
= dom(∆) ∪ names(Γ : t) ∪ fv(fvar x)
= dom(∆) ∪ names(Γ ) ∪ fv(t) ∪ fv(fvar x)
= dom(∆) ∪ names(Γ ) ∪ fv(app t (fvar x))
= dom(∆) ∪ names(Γ : app t (fvar x)).

– LNLet.
∀x|t| /∈ L ⊆ Id

names((x++z 7→ ux) : wx)
IH
⊆ dom(x++z 7→ ux) ∪ names((Γ, x 7→ t

x
) : tx).

Particularly for y|t| /∈ L ⊆ Id :

names((y ++z 7→ uy) : wy)
IH
⊆ dom(y ++z 7→ uy) ∪ names((Γ, y 7→ t

y
) : ty)

= dom(y ++z 7→ uy) ∪ names(Γ ) ∪ {y} ∪ fv(t
y
) ∪ fv(ty)

⊆ dom(y ++z 7→ uy) ∪ names(Γ ) ∪ {y} ∪ fv(t) ∪ {y} ∪ fv(t) ∪ {y}
= dom(y ++z 7→ uy) ∪ names(Γ ) ∪ fv(let t in t)
= dom(y ++z 7→ uy) ∪ names(Γ : let t in t).

ut

6.7 Proof of Lemma 8: renaming

Before proving the renaming lemma (Lemma 8) we need some auxiliary results:
Corollaries 1 and 2, that are proved by Lemmas 16 and 17 respectively.

Lemma 16.
not openk fv fresh y in {k → x}t⇒ fresh y in t

Proof. By structural induction on t:

– t ≡ bvar i j.
Trivial, since fv(bvar i j) = ∅.

– t ≡ fvar z.
Trivial, since fv({k → x}fvar z) = fv(fvar z) = {z}.
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– t ≡ abs t′.
Since fresh y in {k → x}(abs t′),
y /∈ fv({k → x}abs t′) = fv(abs ({k + 1→ x}t′)) = fv({k + 1→ x}t′).
By induction hypothesis, y /∈ fv(t′) = fv(abs t′).

– t ≡ app t′ v.
Since fresh y in {k → x}(app t′ v),
y /∈ fv({k → x}app t′ v)

= fv(app ({k → x}t′) ({k → x}v))
= fv({k → x}t′) ∪ fv({k → x}v).

By induction hypothesis, y /∈ fv(t′) ∧ y /∈ fv(v).
Therefore, y /∈ fv(t′) ∪ fv(v) = fv(app t′ v).

– t ≡ let t in t′.
Since fresh y in {k → x}(let t in t′),
y /∈ fv({k → x}let t in t′)

= fv(let ({k + 1→ x}t) in ({k + 1→ x}t′))
= fv({k + 1→ x}t) ∪ fv({k + 1→ x}t′).

By induction hypothesis, y /∈ fv(t) ∧ y /∈ fv(t′).
Therefore, y /∈ fv(t) ∪ fv(t′) = fv(let t in t′).

ut

Corollary 1.
not open fv fresh y in tx ⇒ fresh y in t

Proof. This is a particular case of Lemma 16 (k = 0). ut

Lemma 17.
free var openk fresh y in t ∧ y ∩ x = ∅ ⇒ fresh y in {k → x}t

Proof. By structural induction on t:

– t ≡ bvar i j.
y /∈ fv(t) ∧ y ∩ x = ∅.

fv({k → x}(bvar i j)) =

{
fv(fvar (List.nth j x)) if i = k ∧ j < |x|
fv(bvar i j) otherwise

=

{
List.nth j x if i = k ∧ j < |x|
∅ otherwise

In both cases y /∈ fv({k → y}(bvar i j)).

– t ≡ fvar z.
Trivial, since fv({k → x}fvar z) = fv(fvar z) = {z}.

– t ≡ abs t′.
y /∈ fv(abs t′) = fv(t′) ∧ y ∩ x = ∅.
By induction hypothesis, y /∈ fv({k + 1→ x}t′) = fv({k → x}abs t′).
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– t ≡ app t′ v.
y /∈ fv(app t′ v) = fv(t′) ∪ fv(v) ∧ y ∩ x.
By induction hypothesis y /∈ fv({k → x}t′) ∧ y /∈ fv({k → x}v).
Thus,
y /∈ fv({k → x}t′) ∪ fv({k → x}v)

= fv(app ({k → x}t′) ({k → x}v))
= fv({k → x}app t′ v)

– t ≡ let t in t′.
y /∈ fv(let t in t′) = fv(t) ∪ fv(t′) ∧ y ∩ x.
By induction hypothesis y /∈ fv({k + 1→ x}t) ∧ y /∈ fv({k + 1→ x}t′).
Thus,
y /∈ fv({k + 1→ x}t) ∪ fv({k + 1→ x}t′)

= fv(let ({k + 1→ x}t) in ({k + 1→ x}t′))
= fv({k → x}let t in t′).

ut

Corollary 2.
free var open fresh y in t ∧ y ∩ x = ∅ ⇒ fresh y in tx

Proof. Take k = 0 in Lemma 17. ut

Another auxiliary result is needed:

Lemma 18.
not subs dom z /∈ dom(Γ [y/x]) ∧ z 6= x⇒ z /∈ dom(Γ )

Proof. By induction on the size of Γ :

– Γ = ∅. Trivial.

– Γ = (∆,x′ 7→ t).
dom(Γ [y/x]) = dom((∆[y/x], x′[y/x] 7→ t[y/x])) = dom(∆[y/x]) ∪ {x′[y/x]}.
z /∈ dom(Γ [y/x]) = dom(∆[y/x]) ∪ {x′[y/x]} IH⇒ z /∈ dom(∆) ∪ {x′[y/x]}.
• x′ = x.

z /∈ dom(∆) ∪ {y} z 6=x⇒ z /∈ dom(∆) ∪ {y} ∪ {x} = dom(Γ ) ∪ {y}
⇒ z /∈ dom(Γ ).

• x′ 6= x.
z /∈ dom(∆) ∪ {x′} = dom(Γ ).

ut

The last auxiliary result that is needed establishes that if a variable x does
not belong to the domain of a heap then the domain of the heap where x is
substituted by y coincides with the domain of the heap:

Lemma 19.
dom subs x /∈ dom(Γ )⇒ dom(Γ [y/x]) = dom(Γ )
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Proof. By induction on the size of Γ :

– Γ = ∅. Trivial.

– Γ = (∆, z 7→ t).

x /∈ dom(Γ )⇒x /∈ dom(∆) ∪ {z} ⇒

{
x /∈ dom(∆)

IH⇒ dom(∆[y/x]) = dom(∆)
x 6= z

dom(Γ [y/x])=dom(∆[y/x], z 7→ t[y/x]) = dom(∆[y/x]) ∪ {z}
=dom(∆) ∪ {z} = dom(Γ )

ut

And now we prove the renaming lemma.

Lemma 8
renaming Γ : t ⇓ ∆ : w ∧ fresh y in (Γ : t) ∧ fresh y in (∆ : w)

⇒ Γ [y/x] : t[y/x] ⇓ ∆[y/x] : w[y/x].

Proof. By rule induction:

– LNLam.
Γ : abs t ⇓ Γ : abs t⇒ {ok Γ} ∧ {lc abs t}.
ok Γ ∧ y /∈ names(Γ : abs t)⇒ ok Γ ∧ y /∈ dom(Γ )

L4⇒ ok Γ [y/x].

lc (abs t)
L15⇒ lc (abs t)[y/x].

By rule LNLam, Γ [y/x] : (abs t)[y/x] ⇓ Γ [y/x] : (abs t)[y/x].

– LNVar.
(Γ, z 7→ t) : (fvar z) ⇓ (∆, z 7→ w) : w ⇒
Γ : t ⇓ ∆ : w ∧ {z /∈ dom(Γ ) ∪ dom(∆)}.
y /∈ names((Γ, z 7→ t) : fv(z)) ∪ names((∆, z 7→ w) : w)

= names(Γ ) ∪ names(∆) ∪ {z} ∪ fv(t) ∪ fv(w)
⇒ y /∈ names(Γ ) ∪ names(∆) ∪ fv(t) ∪ fv(w)
⇒ y /∈ names(Γ : t) ∪ names(∆ : w).

By induction hypothesis, Γ [y/x] : t[y/x] ⇓ ∆[y/x] : w[y/x].
To prove: z[y/x] /∈ dom(Γ [y/x]) ∪ dom(∆[y/x])

1. z 6= x⇒ z 6= y

dom(Γ [y/x]) ∪ dom(∆[y/x])
L14
⊆ dom(Γ ) ∪ dom(∆) ∪ {y}.

z /∈ dom(Γ ) ∪ dom(∆) ∧ y 6= z ⇒ z /∈ dom(Γ ) ∪ dom(∆) ∪ {y}
⇒ z /∈ dom(Γ [y/x]) ∪ dom(∆[y/x]).

2. z = x⇒ z[y/x] = y.
y /∈ names(Γ ) ∪ names(∆)

⇒ y /∈ dom(Γ ) ∪ dom(∆)
L19
= dom(Γ [y/x]) ∪ dom(∆[y/x]).

By rule LNVar, (Γ, z 7→ t)[y/x] : (fvar z)[y/x] ⇓ (∆, z 7→ w)[y/x] : w[y/x].
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– LNApp.
Γ : app t (fvar z) ⇓ ∆ : w
⇒ Γ : t ⇓ Θ : abs u ∧Θ : u[z] ⇓ ∆ : w ∧ {z /∈ dom(Γ )⇒ z /∈ dom(∆)}.

names(Γ : t) ⊆ names(Γ : app t (fvar z))
⊆ names(Γ : app t (fvar z)) ∪ names(∆ : w).

names(Θ : abs u)
L7
⊆ dom(Θ) ∪ names(Γ : t)

L6
⊆ dom(∆) ∪ names(Γ : t)

⊆ names(∆) ∪ names(Γ ) ∪ fv(t)
⊆ names(∆) ∪ names(Γ ) ∪ fv(app t (fvar z)) ∪ fv(w)
= names(Γ : app t (fvar z)) ∪ names(∆ : w).

y /∈ names(Γ : app t (fvar z)) ∪ names(∆ : w)
⇒ y /∈ names(Γ : t) ∪ names(Θ : abs u).

By induction hypothesis,

Γ [y/x] : t[y/x] ⇓ Θ[y/x] : (abs u)[y/x]︸ ︷︷ ︸
abs u[y/x]

(1)

By open var fv in [4] (fv(u[z]) ⊆ fv(u) ∪ {z}),
names(Θ : u[z]) = names(Θ) ∪ fv(u[z]) ⊆ names(Θ) ∪ fv(u) ∪ {z}.

y /∈ names(Θ : abs u) = names(Θ) ∪ fv(u)
y /∈ names(Γ : app t (fvar z))⇒ y 6= z

}
⇒ y /∈ names(Θ : u[z]).

By induction hypothesis,

Θ[y/x] : (u[z])[y/x]︸ ︷︷ ︸
u[y/x][z[y/x]]

⇓ ∆[y/x] : w[y/x] (2)

To prove: z[y/x] /∈ dom(Γ [y/x])⇒ z[y/x] /∈ dom(∆[y/x]).

• z 6= x⇒ z[y/x] = z

dom(∆[y/x])
L14
⊆ dom(∆) ∪ {y}.

z /∈ dom(Γ [y/x])
L18⇒ z /∈ dom(Γ )

hip.⇒ z /∈ dom(∆).
y /∈ names(Γ : app t (fvar z))⇒ y 6= z

}
⇒ z /∈ dom(∆) ∪ {y} ⇒ z /∈ dom(∆[y/x])

• z = x⇒ z[y/x] = y.

y /∈ dom(Γ [y/x])⇒ x /∈ dom(Γ )
hip.⇒ x /∈ dom(∆)

L19⇒ dom(∆) = dom(∆[y/x]).
y /∈ names(∆ : w)⇒ y /∈ dom(∆)⇒ y /∈ dom(∆[y/x])

Therefore,

z[y/x] /∈ dom(Γ [y/x])⇒ z[y/x] /∈ dom(∆[y/x]) (3)

By 1, 2, 3 and rule LNApp, Γ [y/x] : (app t (fvar z))[y/x] ⇓ ∆[y/x] : w[y/x].
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– LNLet.
Γ : let t in t ⇓ (y ++z 7→ uy) : wy

⇒ ∀x|t| /∈ L ⊆ Id .(Γ, x 7→ t
x
) : tx ⇓ (x++z 7→ ux) : wx ∧ {y|t| /∈ L ⊆ Id}.

case: y ∈ L.

• subcase: x /∈ L.
Let L′ = L ∪ {x} − {y}.
To prove: ∀x /∈ L′.
(Γ [y/x], x 7→ t[y/x]x) : t[y/x]x ⇓ (x++z[y/x] 7→ u[y/x]x) : w[y/x]x

Let x /∈ L′.

subsubcase: x ∩ {y} = ∅ ⇒ x /∈ L ∪ {x} ⇒ x ∩ {x} = ∅.
x /∈ L ∪ {x} ⇒ (Γ, x 7→ t

x
) : tx ⇓ (x++z 7→ ux) : wx

x ∩ {y} = ∅
∧y /∈ names(Γ : let t in t) ∪ names((y ++z 7→ uy) : wy)
= names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(uy) ∪ fv(wy)
C1⇒ y /∈ names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(u) ∪ fv(w)
C2⇒ y /∈ names(Γ ) ∪ fv(t

x
) ∪ fv(tx) ∪ y ∪ z ∪ fv(ux) ∪ fv(wx) ∪ x

⇒ y /∈ names((Γ, x 7→ t
x
) : tx) ∪ names((x++z 7→ ux) : wx).

By induction hypothesis,

(Γ, x 7→ t
x
)[y/x] : (tx)[y/x] ⇓ (x++z 7→ ux)[y/x] : (wx)[y/x]

x∩x=∅⇒
(Γ [y/x], x 7→ t[y/x]x) : t[y/x]x ⇓ (x++z[y/x] 7→ u[y/x]x) : w[y/x]x.

subsubcase: x ∩ {y} 6= ∅.
Without lost of generality, consider x = [y : x′] with x′ ∩ {y} = ∅.
x /∈ L′ ⇒ x ∩ {x} = ∅.
Let x′′ = [x : x′]⇒ x′′ /∈ L⇒
(Γ, [x : x′] 7→ t

[x:x′]
) : t[x:x

′] ⇓ ([x : x′] ++z 7→ u[x:x
′]) : w[x:x′]

y ∩ x′′ = ∅
∧y /∈ names(Γ : let t in t) ∪ names((y ++z 7→ uy) : wy)
= names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(uy) ∪ fv(wy)
C1⇒ y /∈ names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(u) ∪ fv(w)
C2⇒ y /∈ names(Γ ) ∪ fv(t

x′′
) ∪ fv(tx

′′
) ∪ y ∪ z ∪ fv(ux

′′
) ∪ fv(wx′′

) ∪ x′′

⇒ y /∈ names((Γ, x′′ 7→ t
x′′

) : tx
′′
) ∪ names((x′′ ++z 7→ ux

′′
) : wx′′

).

By induction hypothesis,

(Γ, [x : x′] 7→ t
[x:x′]

)[y/x] : (t[x:x
′])[y/x] ⇓ ([x : x′] ++z 7→ u[x:x

′])[y/x] :

(w[x:x′])[y/x]⇒
(Γ [y/x], [y : x′] 7→ t[y/x][y:x

′]) : t[y/x][y:x
′] ⇓ ([y : x′] ++z[y/x] 7→

u[y/x][y:x
′]) : w[y/x][y:x

′]⇒
(Γ [y/x], x 7→ t[y/x]x) : t[y/x]x ⇓ (x++z[y/x] 7→ u[y/x]x) : w[y/x]x.
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• subcase: x ∈ L.
Let L′ = L.
To prove: ∀x /∈ L′.
(Γ [y/x], x 7→ t[y/x]x) : t[y/x]x ⇓ (x++z[y/x] 7→ u[y/x]x) : w[y/x]x

Let x /∈ L′ = L.
x /∈ L⇒ (Γ, x 7→ t

x
) : tx ⇓ (x++z 7→ ux) : wx

x ∩ {y} = ∅
∧y /∈ names(Γ : let t in t) ∪ names((y ++z 7→ uy) : wy)
= names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(uy) ∪ fv(wy)
C1⇒ y /∈ names(Γ ) ∪ fv(t) ∪ fv(t) ∪ y ∪ z ∪ fv(u) ∪ fv(w)
C2⇒ y /∈ names(Γ ) ∪ fv(t

x
) ∪ fv(tx) ∪ y ∪ z ∪ fv(ux) ∪ fv(wx) ∪ x

⇒ y /∈ names((Γ, x 7→ t
x
) : tx) ∪ names((x++z 7→ ux) : wx).

By induction hypothesis,

(Γ, x 7→ t
x
)[y/x] : (tx)[y/x] ⇓ (x++z 7→ ux)[y/x] : (wx)[y/x]

x∩x=∅⇒ (Γ [y/x], x 7→ t[y/x]x) : t[y/x]x ⇓ (x ++z[y/x] 7→ u[y/x]x) :
w[y/x]x.

case: y /∈ L.

∀x /∈ L.(Γ, x 7→ t
x
) : tx ⇓ (x++z 7→ ux) : wx,

⇒ ∀x /∈ L ∪ {y}.(Γ, x 7→ t
x
) : tx ⇓ (x++z 7→ ux) : wx.

Therefore we have now y ∈ L ∪ {y} and we are in the previous case.
ut

6.8 Proof of Lemma 9 : let intro

Lemma 9
let intro (Γ, x 7→ t

x
) : tx ⇓ (x++z 7→ ux) : wx ∧ fresh x in (Γ : let t in t)

⇒ Γ : let t in t ⇓ (x++z 7→ ux) : wx.

Proof. We have to find a finite set L such that x /∈ L and

∀y /∈ L.(Γ, y 7→ t
y
) : ty ⇓ (y ++z 7→ uy) : wy.

Consider L′ = names((Γ, x 7→ t
x
) : tx) ∪ names((x++z 7→ ux) : wx).

By hypothesis, (Γ, x 7→ t
x
) : tx ⇓ (x++z 7→ ux) : wx.

Applying Lemma 8, ∀y /∈ L′.(Γ, y 7→ t
y
) : ty ⇓ (y ++z 7→ uy) : wy.

Let L = L′\{x}.
Therefore, ∀y /∈ L.(Γ, y 7→ t

y
) : ty ⇓ (y ++z 7→ uy) : wy.

ut


